References

Almog, M. & Korngreen, A. (2016). Is realistic neuronal modeling realistic? J. Neurophysiol., 116, 2180-2209.

Beiderbeck, B., Myoga, M.H., Müller, N. I.C., Callan, A.R., Friauf, E. Grothe, B., Pecka, M. (2018). Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem. Nature Com., 9, 1771.

BernsteinTrue confession: I have not read this, I have just read about it. J (1902). Untersuchungen zur Thermodynamik der bioelektrischen Ströme Pflügers Archiv. 92, 521–562.

Bezanilla, F & Armstrong, C.M. (1977). Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol.70, 549-566.

Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 48, 18-46.

Butera, R.J., Rinzel, J.R. & Smith, J.C. (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82, 382–397

Byrne, J.H. (1980a). Analysis of ionic conductance mechanisms in motor cells mediating inking behaviour in Aplysia californicaJ. Neurophysiol. 43, 630-650.

Byrne, J.H. (1980b). Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behaviour in Aplysia californicaJ. Neurophysiol. 43, 651- 668.

Byrne, J.J. (1979). Ionic currents and behaviour. Trends Neurosci. 2, 268-270.

Carr, C.E. & Konishi, M. (1988). Axonal delay lines for time measurement in the owl’s brainstem. Proc. Nat. Acad. Sci, 85, 8311–8315.

Carr, C.E. & Konishi, M. (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci., 10, 3227-3246.

Colquhoun, D. & Hawkes, A.G. (1981). On the stochastic properties of single ion channels. Proc. R. Soc. Lond. (B) 211, 205-235.

Colquhoun, D. & Hawkes, A.G. (1983). The principles of the stochastic interpretation of ion-channel mechanisms. In "Single Channel Recording". Eds. B. Sakmann & E. Neher. Plenum Press, New York.

Colquhoun, D & Hawkes, A. G. (1994). The interpretation of single channel recordings. In "Microelectrode techniques; the Plymouth workshop handbook". 2nd Edition. Ed. D. Ogden. The Company of Biologists Ltd., Cambridge U.K.

Dale, N. (2002). Resetting intrinsic purinergic modulation of neural activity: an associative mechanism? J. Neurosci. 22, 10461-10469.

del Castillo, J. and Katz, B, (1954) Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560-573.

del Castillo, J. & Katz, B. (1957). Interaction at endplate receptors between different choline derivatives. Proc. R. Soc. Lond. B 146, 369-381.

Edwards, D.H., Heitler, W.J. & Krasne, F.B. (1999). Fifty years of a command neuron: the neurobiology of escape behaviour in the crayfish. Trends Neurosci., 22, 153-161.

Engelman, H. & MacDermott, A. (2004). Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 5, 135–145.

Furshpan, E.J. & Potter, D.D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.), 145, 289-235.

Gjorgjieva, J., Berni, J. Evers, J.F. & Eglen, S. J. (2013). Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling. Front. Comput. Neurosci., 7, 1-19.

Grothe, B., Pecka, M. & Mcalpine, D. (2010). Mechanisms of Sound Localization in Mammals. Physiol. Rev., 90, 983–1012.

Hebb, D.O. (1949). Organisation of Behavior. Wiley, New York.

Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. (Lond.), 117, 500-5444.

Hodgkin, A.L., Rushton, W.A.H. (1946). The electrical constants of a crustacean nerve fibre. Proc. Roy. Soc. B. 133, 444-479.

Jack, J.J.B., Noble, D., Tsien, R.W. (1975). Electric current flow in excitable cells. Clarendon Press, Oxford.

Jeffress, L.A. (1948). A place theory of sound localization. J. Comp. Physiol. Psych. 41, 35–39.

Kim, S., Ma, L., Unruh, J., McKinney, S., Yu, C.R. (2015). Intracellular chloride concentration of the mouse vomeronasal neuron. BMC Neuroscience 16, 19.

Kueh, D., Barnett, W.H., Cymbalyuk, G.S. & Calabrese, R.L. (2016). Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches. eLife 5, e19322.

Levin, J.E. & Miller, J.P. (1996). Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature 380, 165 - 168.

Li, W-C, Merrison-Hort, R., Zhang, H-Y & Borisyuk, R. (2014). The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator. J. Neurosci. 34, 6065-6077.

Lin, Q., Wu, J. & Willis, W.D. (1999) Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J. Neurophysiol. 82, 2602-2611.

Linaro, D., Storace, M., & Giugliano, M. (2011). Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput. Biol., 7(3).

Macgregor, R.J. (1987). Neural and Brain Modelling. Academic Press, London.

McDonnel, M.D. & Abbot, D. (2009). What Is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5(5): e1000348. doi:10.1371/journal.pcbi.1000348

Miller, J.P. & Selverston, A.I. (1979). Rapid killing of single neurons by irradiation of intracellularly injected dye. Science, 206, 702-704.

Morris, C. & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fibre. Biophys. J. 35, 193-213.

Picton, L.D., Zhang, H.Y., & Sillar, K.T. (2017) Sodium pump regulation of locomotor control circuits. J. Neurophysiol. 118, 1070-1081. DOI: 10.1152/jn.00066.2017.

Picton, L.D., Sillar, K.T. & Zhang, H-Y (2018). Control of Xenopus tadpole locomotion via selective expression of Ih in excitatory interneurons. Current Biology 28, 3911-3923.

Roberts, A., Li, W-C. & Soffe, S.R. (2010). How neurons generate behavior in a hatchling amphibian tadpole: an outline. Front. Behav. Neurosci., 4, 1-11.

Sautois, B. Soffe, S.R., Li, W-C. & Roberts, R. (2007). Role of type-specific neuron properties in a spinal cord motor network. J. Comput. Neurosci., 23, 59–77.

Sigworth, F.J. & Sine, S.M. (1987). Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J., 52; 1047-1054.

Sillar, K.T., Picton, L.D. & Heitler, W.J. (2016) The neuroethology of predation and escape. Wiley Blackwell, Oxford, UK.

Thompson, S.M. (1986). Relations between chord and slope conductances and equivalent electromotive forces. Cell Physiol., 250, C333-C339.

Traub, R.D., Wong, R.K., Miles, R.  Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66, 635–650.

Trotier, D., Døving, K.B. (1996). Direct influence of the sodium pump on the membrane potential of vomeronasal chemoreceptor neurones in frog. J. Physiol., 490, 611-621.

Vu, E.T. & Krasne, F.B. (1992). Evidence of a computational distinction between proximal and distal neuronal inhibition. Science, 255, 1710-1712.

Wilson, H.R. & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12, 1-24.

Zalc, B., Goujet, D, & Colman, D. (2008). The origin of the myelination program in vertebrates. Current Biology 18(12), R511-512.

Zhang, H-Y & Sillar, K.T. (2012). Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function. Current Biology 22, 526-531.

Zou, X. & Wang, D-H. (2016). On the phase relationship between excitatory and inhibitory neurons in oscillation. Front. Comput. Neurosci., 10, 138.