Aertsen, A.M, Gerstein, G.L., Habib, M.K. & Palm, G. (1989) Dynamics of neuronal firing correlation: modulation of "effective connectivity". J. Neurophysiol. 61, 900-917.
Antoniadis, A., Bigot, J., & Sapatinas, T. (2001). Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study. Journal of Statistical Software, 6(6), 1–83.
Baird, L.C. & Bahn, W.L. (2009) An o (log n) running median or running statistic method for use with bbc jam resistance. Tech. Rep. USAFA-TR-2009-ACCR-03
Biltoft, C.A. & Pardyjak, E.R., (2009) Spectral coherence and the statistical significance of turbulent flux computations. Journal of atmospheric and oceanic technology, 26(2), 403-409.
Bouman, C. A. (1997). Cluster: An unsupervised algorithm for modeling Gaussian mixtures. Web publication.
Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Am Stat Assoc 74; 829-836.
Clements, J. D. & Bekkers, J. M. (1997) Detection of spontaneous synaptic events with an optimally scaled template. Biophysics J. 73, 220-229.
Colquhoun, D. & Hawkes, A.G. (1981). On the stochastic properties of single ion channels. Proc. R. Soc. Lond. (B) 211, 205-235.
Cutts, C.S. & Eglen, S.J. (2014). Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. J. Neurosci. 34, 14288 –14303.
Dean, R.T. & Dunsmuir, W.T.M. (2016) Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models. Behav Res 48, 783–802. (2016).
del Castillo, J. & Katz, B. (1957). Interaction at end-plate receptors between different choline derivatives. Proc. Roy. Soc. B. 146, 369-381.
Evoy, W.H., Kennedy, D. & Wilson, D.M. (1967). Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J Exp Biol 46, 393–411.
Gourévitch, B. & Eggermont, J.J. (2007) A nonparametric approach for detection of bursts in spike trains. J. Neurosci. Methods, 160, 349-358.
Graps, A. (1995) An Introduction to Wavelets. IEEE Computational Sciences and Engineering, 2, 50-61.
Hen, I, Sakov, A. Kafkafi, N. Golani, I. & Benjamini, Y, (2004) The dynamics of spatial behavior: how can robust smoothing techniques help? J. Neurosci. Methods, 133; 161-172
Jaffard, S., Meyer, Y. & Ryan, R.D. (2001). Wavelets: tools for science and technology. Philadelphia : Society for Industrial and Applied Mathematics.
Jolliffe, I.T. (2002) Principal component analysis. Springer series in statistics. 2nd edition.
Jolliffe I.T. & Cadima J. (2016) Principal component analysis: a review andrecent developments. Phil. Trans. R. Soc. A 374:20150202.
Knuth, K. H. (2013) Optimal Data-Based Binning for Histograms. arXiv:physics/0605197v2.
Legéndy, C.R. & Salcman, M. (1985) Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol., 53(4), 926-939.
Letelier, J. & Weber, P. (2000) Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods 101, 93-106.
Lewicki, M.S., (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Comput. Neural. Syst. 9, R53-R78
Linaro, D., Storace, M., & Giugliano, M. (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Computational Biology, 7(3).
Mu, Y, Bennet, D.V., Rubinov, M., Narayan, S. Yang, C-T., Tanimoto, M., Mensh, B.D., Looger., L.L. & Ahrens, M.B. (2019) Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178, 27-43.
Platkiewicz, J. & Brette, R. (2010) A threshold equation for action potential initiation. PLoS Comput Biol. 6(7):e1000850. doi:10.1371/journal.pcbi.1000850
Pouzat, C. & Detorakis, G. Is. (2014). SPySort: Neuronal Spike Sorting with Python. Proc.7th Eur. Conf. on Python in Science
Pouzat, C., Mazor, O. & Laurent, G. (2002). Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122; 43-57
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. ( 2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press.
Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation 16, 1661-1687.
Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and Neurons. Biophys. J. 1969, 9, 1483-1508.
Sekerli, M., Del Negro, C. A., Lee, R. H. & Butera, R. J. (2004). Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies. IEEE Transactions on Biomedical Engineering, 51; 1665-1672. doi: 10.1109/TBME.2004.827531.
Sigworth, F.J. & Sine, S.M. (1987). Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047-1054.
Zar, J.H. (2010). Biostatistical analysis. Pearson Prentice Hall, 5th edition. Chap. 26: Circular distributions: descriptive statistics.