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@ Effects of dissipation on collective behaviour
@ Coherently driven JCHM (Mean-Field)
@ Parametrically driven BHM (MF and MPO)
@ Parametrically driven RHM (MF and MPO)

@ Effects of collective behaviour on dissipation
@ Coupled qubit-cavity systems
@ Collective coupling to baths
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Coherently pumped JCHM

R

J A ;
H=-7 vl + Ea,-z +9(Wlo7 +He)+f(ye™! + He.)
; .

orp = —i[H, p]— Lw[p] Lo~[p]
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Coherently pumped single cavity (sishop et al. Nat. Phys 09]

%g H = %O’Z +9(Wio™ + H.c.)+f(zpe’“f’”mpt +H.c.)
Op = —i[H, p]- Lw[p] Lo- o]
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Coherently pumped single cavity (sishop et al. Nat. Phys 09]

%g H = %O’Z +9(Wio™ + H.c.)+f(weiwf’“mpt +H.c.)
Op = —i[H, p]- Lw[ﬂ] Lo- o]

@ Anti-resonance in |(1))].
@ Effective 2LS:
|Empty) |1 polarlton>

|<a>|
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Coherently pumped dimer & array

Chose detuning a /la Dicke model
Single cavity Array

0)pump

®

[Nissen et al. PRL '12]
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Coherently pumped dimer & array

Chose detuning a /a Dicke model
Single cavity Array

mpump

O‘)pump

Evolution of anti-resonance vs J.
0.2 .‘..\

o L . . , [Nissen et al. PRL '12]
-1.06 -1.04 -1.02 -1
mpump/g
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Coherently pumped dimer & array

Chose detuning a /a Dicke model
Single cavity Array

(Dpump
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[Nissen et al. PRL '12]
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Coherently pumped dimer & array

Chose detuning a /a Dicke model
Single cavity

Array

|<a>|

) [Nissen et al. PRL "12]
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Coherently pumped dimer & array

Chose detuning a /a Dicke model
Single cavity Array

@ Bistability at intermediate J

» More/less localised states
» Connects to Dicke limit

o Lu . . . [Nissen et al. PRL ’12]

|<a>|
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Coherent pumped array — disorder

@ Effect of disorder, A — A;
» Distribution of ¢y — Washes out bistable jump

0.3

]

0
-1.02 -1.01

-1

-0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency

[Kulaitis et al. PRA, ’13]

100

80

60

40

20

0

Jonathan Keeling Collective dissipative behaviour Vienna, January 2016



Coherent pumped array — disorder

@ Effect of disorder, A — A;
» Distribution of ¢y — Washes out bistable jump

@ Bistability near resonance — phase of ¢ depends on A;
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Coherent pumped array — disorder

@ Effect of disorder, A — A;

» Distribution of ¢y — Washes out bistable jump
@ Bistability near resonance — phase of ) depends on A;

@ Complex v distribution
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Coherent pumping beyond Mean Field

@ Crucial question: what can we expect from true p ?
» No bistability (replaced by bimodality)

PSS = Z VV/'PMH

1

» Slow approach to steady state.
[Lugiato, Prog. Opt. 1984; Mendoza-Arenas ...Jaksch 1510.06651]
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Coherent pumping beyond Mean Field

@ Crucial question: what can we expect from true p ?
» No bistability (replaced by bimodality)

pss = _ Wipwr,
i
» Slow approach to steady state.
[Lugiato, Prog. Opt. 1984; Mendoza-Arenas ...Jaksch 1510.06651]
@ But...

» Density matrix is ensemble average of experiments
» cf Interference fringes of BEC. [Leggett, RMP '01]
[1(r) +a(r)]2 = ... + VI . cos(kr + A¢)

* Experiment: yes.
* Density matrix: no. Ag, (cos(kr + A¢))ae = 0.
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Coherent pumping beyond Mean Field

@ Crucial question: what can we expect from true p ?
» No bistability (replaced by bimodality)

pss = _ Wipwr,
i
» Slow approach to steady state.
[Lugiato, Prog. Opt. 1984; Mendoza-Arenas ...Jaksch 1510.06651]
@ But...

» Density matrix is ensemble average of experiments
» cf Interference fringes of BEC. [Leggett, RMP '01]
[1(r) +a(r)]2 = ... + VI . cos(kr + A¢)

* Experiment: yes.
* Density matrix: no. Ag, (cos(kr + A¢))ae = 0.

» Measuring system collapses to state
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Coherent pumping beyond Mean Field

@ Crucial question: what can we expect from true p ?
» No bistability (replaced by bimodality)

pss = _ Wipwr,
i
» Slow approach to steady state.
[Lugiato, Prog. Opt. 1984; Mendoza-Arenas ...Jaksch 1510.06651]
@ But...

» Density matrix is ensemble average of experiments
» cf Interference fringes of BEC. [Leggett, RMP '01]
[1(r) +a(r)]2 = ... + VI . cos(kr + A¢)

* Experiment: yes.
* Density matrix: no. Ag, (cos(kr + A¢))ae = 0.

» Measuring system collapses to state
@ Need higher order correlations — probability/Wigner distribution
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Effects of dissipation on collective behaviour

@ Effects of dissipation on collective behaviour

@ Parametrically driven BHM (MF and MPO)
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H = —; > vl wz [wczb,-*w,- + Uplylyp — Q (¢;¢;+1 e—2int | 1, C)]

<ij> i

[Bardyn & Immamoglu, PRL '12]
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H = —; > vl wz [wczb,-*w,- + Uplylyp — Q <¢;¢;+1 e—2int | 1, C)]

<ij> i

Rotating frame, blockade approximation, rescale:

H = _JZ [T/*Ti:J + 1T 9T+ A (Ti+7111 + 71117/_)]

[Bardyn & Immamoglu, PRL '12]
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H = —; > vl wz [chD,TZbi + Uplylyp — Q <¢;¢;+1 e—2int | 1, C)]

<ij> i
Rotating frame, blockade approximation, rescale:
H= —JZ |:7'I-—i_7'i:_1 + 7',.117',._ +gf+A (TfT,L + 7',-:_17'1-_)]
Orp = —i[H,pl +>_ kL[] ]
i

[Bardyn & Immamoglu, PRL '12]
Jonathan Keeling Collective dissipative behaviour Vienna, January 2016 10



Parametric pumping — open system

H__JZ[ l+1 +1Ti_+gTiz+A( I+1+TI+1 i )]
Op = —i[H,p) + > kL[r ]
i

® Mean-field EOM: () = Fu((r] 1), (), (/1))
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Parametric pumping — open system

H__JZ[ Tipr T

+97; +A( I+1+TI+1 i )]
ot 1+ Y el

o Mean-field EOM: 9;(r®) = Fa((r0 ), (), (=

_1/» T,' ) Ti+1>)
@ Dynamical attractors, linear stability

Trivial
0 state

Trivial
state

Jonathan Keeling
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Why AFM/FM attractors .

:

state

[Joshi, Nissen, Keeling, PRA ’13] - ~
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Why AFM/FM attractors

Trivial
state

@ Linear stability, fluctuation ~ exp(—ivkt + ikr;) Linear stability

vk = —iniZJ\/gz +2gcosk + (1 — A2)cos? k

[Joshi, Nissen, Keeling, PRA ’13]



Why AFM/FM attractors

Trivial
state

@ Linear stability, fluctuation ~ exp(—ivkt + ikr;) Linear stability

vk = —iniZJ\/gz +2gcosk + (1 — A2)cos? k

@ g < —1, Dissipation matches ground state
» Most unstable mode, k =0

[Joshi, Nissen, Keeling, PRA ’13]



Why AFM/FM attractors .

Trivial
state

@ Linear stability, fluctuation ~ exp(—ivkt + ikr;) Linear stability

vk = —iniZJ\/gz +2gcosk + (1 — A2)cos? k

@ g <« —1, Dissipation matches ground state
» Most unstable mode, k =0

@ g > +1, Dissipation matches max energy
» Most unstable mode, k = 7

[Joshi, Nissen, Keeling, PRA ’13]



Beyond mean-field

@ MPO for density matrices.
Steady state only, 40 cavities, numerically converged
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Beyond mean-field

@ MPO for density matrices.
Steady state only, 40 cavities, numerically converged

@ No broken symmetry — correlators: A =1, x = 0.5J:
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Beyond mean-field

@ MPO for density matrices.
Steady state only, 40 cavities, numerically converged

@ No broken symmetry — correlators: A =1, x = 0.5J:

X X
N/27 N/2,N[2+1

-
-

Mean-field theory
= = = MPO numerics
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Correlations

@ AFM vs FM from sign of g (A = 1)

(b),
(G

Trivial
state
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Correlations

@ AFM vs FM from sign of g (A = 1)

(b),
(G

ON/ZHN/M/Z~1> ,

e
o

Trivial
state

@ Short range, finite @ A — 0, Analytic spin-wave,
?C)usceptibilitys&a€ ‘<Ti_7ﬁ— />’ o exp(—&el)
0.8 == Egg
4
=% =5 [0 ] g
0.4
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Correlations

@ AFM vs FM from sign

Az

Trivial
state

@ Short range, finite
susceptibility

of g (A =1
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@ A — 0, Analytic spin-wave,
<Ti_7',il>’ ox exp(—¢&cl)

@ e
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Effects of dissipation on collective behaviour

@ Effects of dissipation on collective behaviour

@ Parametrically driven RHM (MF and MPO)
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Rabi Hubbard model

-
. "
¢\'\‘
r' ‘\
X’ * l
\\
X

H=-JY iy + > pfa
) ,-

hRabi — uﬂpTw 4 %0’2 4 |:1/JT(QO'— + g/0'+) + HC]
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Rabi Hubbard model

-
. e
¢\'\‘
r' ‘\
X’ * l
\\
X

H=-JY iy + > pfa
(i i
hRab — oyt 4 %UZ + {dﬁ(ga_ +got)+ H.C.]

@ W = Weavity — Wpump
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Rabi Hubbard model

5
N
¢\‘“
r' ‘\
X’ l
"%

H=-JY iy + > pfa
(i i
hRab — oyt 4 %az + [z/ﬁ(go—‘ +got)+ H.c.]

@ W = Weavity — Wpump
@ g, g separately tunable
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Rabi Hubbard model

5
N
¢\‘“
r' ‘\
X’ l
"%

H=-JY iy + > pfa
(i i
hRab — oyt 4 %az + [z/ﬁ(ga‘ +got)+ H.c.]

@ W = Weavity — Wpump
@ g, g separately tunable

p=—iH,p] + Znﬁ[wil +7L[o] ]
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Rabi Hubbard model — equilibrium

5 T T T TTTTT LERERIERLL ] T T T TTTTT

4 _ — g’/g=0.5

g/, -

2 — —]

1_ —
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0.001 0.01 0.1 1
J/m0

[Schiré et al. PRL '12]
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Rabi Hubbard model — equilibrium

5 T T TTTTIT T I\IIII\, T T TTTTIT
4-_ — g’/g=0.5| |
g/, -
27 —]
1_ —
0- 1 IIIIIII| 1 I\IIII“ 1 IIIIII-
0.001 0.01 0.1 1
J/m0

@ Discrete Z, symmetry
» Parity Mott lobes

[Schiré et al. PRL '12]
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Rabi Hubbard model — equilibrium

5 T T T rrrm LR RN T T Trorm 5 T T T T T T T

4 _ — g’/g=0.5

Ll Lol [ )

00.001 0.01 0.1 1

J/m0

@ Discrete Z, symmetry
» Parity Mott lobes

[Schiré et al. PRL '12]
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Rabi Hubbard model — equilibrium

5 T T T rrrm LR RN T T Trorm 5 T T T T T T T

4 _ — g’/g=0.5

Ll Lol [ )

00.001 0.01 0.1 1

J/m0

@ Discrete Z, symmetry
» Parity Mott lobes @ g = ¢, never degenerate —
never superfluid

[Schiré et al. PRL '12]
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Driven-dissipative system — linear stability
Mean field theory — still large Hilbert space.
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Driven-dissipative system — linear stability
Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)

Follow [Boité et al. , PRA 2014]
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Driven-dissipative system — linear stability
Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)
@ i Eigenvalues of M = My — txMy, tx = —2J cos(k)
@ Unstable if 3[k] > 0
Follow [Boité et al. , PRA 2014]
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Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)
@ i Eigenvalues of M = My — txMy, tx = —2J cos(k)
@ Unstable if 3[k] > 0

Follow [Boité et al. , PRA 2014]

02 [ g=g’=1"

e
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Max[Im(vy)]
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S
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2Jcos(k)
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Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)
@ i Eigenvalues of M = My — txMy, tx = —2J cos(k)
@ Unstable if 3[k] > 0

Follow [Boité et al. , PRA 2014]

02 [ g=g'=1"
J=0.07
= 0.1 r
S
E e Given J, || < 2J
E‘ 4
= o1}
M
02 t ‘ ‘ ‘
-1 0.5 0 0.5 1
2Jcos(k)
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Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)
@ 1y Eigenvalues of M = My — txMy, & = —2J cos(k)
@ Unstable if S[vk] > 0

Follow [Boité et al. , PRA 2014]

02 | g=g’=1
J=0.25

= 0.1 r
=
E e Given J, || < 2J
5 @ First instability k = 0,7
= 01

-0.2 T ‘

-1 0.5 0 0.5 1

2Jcos(k)
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Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.
@ Normal state + fluctuations: p = @p(pss + > Ipk€* "™ + H.c.)
@ 1y Eigenvalues of M = My — txMy, & = —2J cos(k)
@ Unstable if S[vk] > 0

Follow [Boité et al. , PRA 2014]

0.2 [ gdg’=1"
190.4
0.1 |
@ Given J, || < 2J

@ First instability k = 0, =
@ k— m/2atlarge J

Max[Im(vy)]
=

-1 -0.5 0 0.5 1
2Jcos(k)
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Rabi-Hubbard model — linear stability

Stability phase diagram:
2 =,

T

1.5 i

Q

=

. E]
P 2 E
1)) =
&

05 =

0

0 0.25 0.5 0.75 1

[Schir6 et al. arXiv:1503.04456]
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Rabi-Hubbard model — linear stability

Steady state correlations:

/N

g=1.5 ——

Stability phase diagram: 06
. 04
2 ra T =
o 02
)
15 x 0
= 02
\ g 0
P 2 &
1)) =
&
0.5 =
0 0
0 025 05 075 1
J

[Schir6 et al. arXiv:1503.04456]
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Rabi-Hubbard model — linear stability

Steady state correlations:

Stability phase diagram: 06
04
2 ra T =
& o2 \\
1.5 e 0
= 02 e=ls ——
. E
ﬁo 1 2 2 0 0.25 0.5 0.75
o = J
Z il
05 S ...vs|i—j|=1
0 o 0.6 1=0.4
0 025 05 075 1 ~ 04
02
33: 0
[Schir6 et al. arXiv:1503.04456] 0n
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Rabi-Hubbard model — linear stability

Steady state correlations:

Stability phase diagram: 06
- n 04
& o2 \\
g /)
15 e 0
= 02 e=ls ——
\ <
on » 0 0.25 0.5 0.75
u 1 /2 £ ]
05 < vs|i—jl=1
0.6 J=0.4
0 0 04 1=0.6 ——
0 025 05 075 1 ~
N /\
© o /
[Schir et al. arXiv:1503.04456] - \/ \/

Separation, [
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Rabi-Hubbard model — linear stability

Steady state correlations:

Stability phase diagram: 06
- x 04
o 02 \.\
1.5 e 0
% -0.2 g=l.5 —_—
N <
on > 0 0.25 0.5 0.75
u 1 /2 £ ]
o £ . vsli—jl=1
0 0 =
0 025 05 075 1 ~ 04 1=08
; 5N O
LR /
[Schiré et al. arXiv:1503.04456] - W \/ \>ﬂ

Separation, [
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Linear stability — limit cycles

o If v = +v; + iy} at instability — Limit Cycle
[Lee et al. PRA 11, Jin et al. PRL ’13, Ludwig & Marquard PRL ’13, Chan et
al. arXiV:1501.00979]

[Schiro et al. arXiv:1503.04456]
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Linear stability — limit cycles

o If v = +v; + iy} at instability — Limit Cycle
[Lee et al. PRA 11, Jin et al. PRL ’13, Ludwig & Marquard PRL ’13, Chan et
al. arXiV:1501.00979]
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\ é /\: 04+t 1
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0 0 0.2 g=0.5 : .
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J

[Schiro et al. arXiv:1503.04456]
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Phase-boundary Effective model

@ Compare phase boundaries

Ground state: Driven dissipative:
ST . 2 —— ———
4 |

g/(;)0 [ ] gwyl - B
[— ¢is=10} o
i Normal
0 L 1 1 1 1
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Phase-boundary Effective model

@ Compare phase boundaries

Ground state: Driven dissipative:
ST . 2 —— ———
4 |
g/(!)0 B ] glogl -
(= ere=to] S
i Normal
0 I | | | |

@ Ground state, Jgit ~ e—29°/< at g>w
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Phase-boundary Effective model

@ Compare phase boundaries

Ground state: Driven dissipative:
ST . 2 —— ———
4 |
g/(!)0 N i gloyl - f
(= ere=to] S
i Normal
0 I | I | | |

0 02 04 06 08 1

@ Ground state, Jgit ~ e—29°/< at g>w
@ Dissipation means Jgit > Jmin
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Phase-boundary Effective model

@ Consider effective spinor model

A ; ; .
H:ZETiZ_ZJXTiXTiX—i_J}/T/nyVv p:—I[H,p]+
i (i)
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Phase-boundary Effective model

@ Consider effective spinor model
H= Z—T = I+ dyr! 7 p=—i[H p|+ ...
(i)

@ Level populations:

1
3
/ <] =
2 . |
=
1 <
uf £05
0 =
=
1 £
2 g'/g=1.0
03 i T3 0 05 1 s
3 3
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Phase-boundary Effective model

@ Consider effective spinor model
H= Z—T = I+ dyr! 7 p=—i[H p|+ ...
(i)

@ Level populations:

1
3
2/——\ /:i
1 <
ufo £05
5 _
0 05 1 s
3 3
2 ~2 3
o2 /,.2 K w
@ If A ~wye 29/ « 1 Jorit =~ g +@
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g # g, Level crossings
@ For g’ # g, A can swap sign

Population, (nlpln)
=4
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g # g, Level crossings
@ For g’ # g, A can swap sign ...and loss can invert populatoin

1
3
2 //\ 2
: z
of £05
0 =
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2 g'/g=0.25
03 i 5 0
g g
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g # g, Level crossings

@ For g’ # g, A can swap sign ...and loss can invert populatoin

1
3
\QE.
<! =
I S 05
0 =
=
] \ 2 T\\_—__
=9
2 2'/g=0.25 | A
03 i 5 0 0.5 1 15

g

g

@ If levels/populations in wrong order, FM/AFM switch.
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g # g, Level crossings

@ For g’ # g, A can swap sign ...and loss can invert populatoin
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@ If levels/populations in wrong order, FM/AFM switch.
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iMPO results

0.6 12 1.8

Jonathan Keeling Collective dissipative behaviour Vienna, January 2016

23



Collective dissipation

@ Effects of collective behaviour on dissipation
@ Coupled qubit-cavity systems
@ Collective coupling to baths
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Collective dephasing

@ Real environment is not Markovian
» [Carmichael & Walls JPA '73] Requirements for correct equilibrium
» [Ciuti & Carusotto PRA '09] Dicke SR and emission
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Collective dephasing

@ Real environment is not Markovian
» [Carmichael & Walls JPA '73] Requirements for correct equilibrium
» [Ciuti & Carusotto PRA '09] Dicke SR and emission

@ Cannot assume fixed «, ~y
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Collective dephasing

@ Real environment is not Markovian
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Collective dephasing

@ Real environment is not Markovian
» [Carmichael & Walls JPA '73] Requirements for correct equilibrium
» [Ciuti & Carusotto PRA '09] Dicke SR and emission

@ Cannot assume fixed «, ~y
@ Phase transition — soft modes

Example: Dicke model linewidth:

—waw—i-Z —of+9g (oY +he)

+> 07> (B + bg) + D Bablyba
i q q

@ Bath density of states J(v) = 3", 725(v — q) o 1/v
@ Spectrum e, of Hp: Linewidth o J(en — €p)

[Nissen, Fink et al. PRL "13]
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Collective dephasing of transmons

0.014

o
f=)
=
)

[a)|? (a.u.)

frequency (a.u.)

linewidth/g

0.01

experiment ——s— R
theory =

1 2 3 4 5
number of qubits, N

0.008

@ Expt: collective bath

@ Many baths — cross terms,
non-monotonic

[Nissen, Fink ef al. PRL '13]

Jonathan Keeling Collective dissipative behaviour Vienna, January 2016 26



Collective dephasing of transmons

0.014
3 @ Detuing dependence of
2 . . _ 5 >
@ 0012 o linewidths — /A% + Ng2.
= = g7
2 — pes P
§ frequency (a.u.)
= 0.01
experiment =——sw— ‘ o 000
0.008 L theory, ‘ z
1 2 3 4 5 g
number of qubits, N =00057
@ Expt: collective bath 0 5
detuning A/g

@ Many baths — cross terms,
non-monotonic

[Nissen, Fink ef al. PRL '13]
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Effects of collective behaviour on dissipation

@ Effects of collective behaviour on dissipation

@ Collective coupling to baths
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Toy problem: two bosonic modes

@ Basic problem: Emission from thermal bath

.........

: H = wadl, + wb?ﬁwb + Haath
E J(v) + (90212; + @Z@L)Z giéi + H.c.
' i

Jonathan Keeling Collective dissipative behaviour Vienna, January 2016 28



Toy problem: naive solutions

@ Two “expected” behaviours:
» At resonance: “weak lasing” — coupling to bath dominates

d ~ n * 7 * 7
i = T Lleaba+ ool + T Llpzbh + b))
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Toy problem: naive solutions

@ Two “expected” behaviours:
» At resonance: “weak lasing” — coupling to bath dominates

d ~ -~ * 7 * 7
i = T Lleaba+ ool + T Llpzbh + b))

» Far from resonance: pointer states are eigenstates

O =Y rheld] + i)

i=a,b

@ Explicit derivation — Redfield theory

Op = ~ilH, pl + D L} (20,00] — o, TZ;,TTZ;j]Jr)
-

+> L,Tj (Zﬁpﬂgi —lp, 12/1/3;]+) :
;
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Toy problem: exact solution

~

@ Solve via Laplace transform. Find Fj(t) = (@2}(1‘) (1))

[m] = = =
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))
@ Steady state: 2107 — ]

Fab I

0.2 0.4
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: 10— | ‘ ]
; 3 —
» Singularat A =0 B 102 ]
22 Fyp —
0 ‘
S 02F
8 Faa -
= 0 Fob ‘
0.4 0.2 0 0.2 0.4
-A=2(wy,-0,)
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Toy problem: exact solution

~

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: 10— | ‘ ]
; 2 —
» Singularat A =0 02} ]
. . ~ R
@ Time evolution — oL T
2
Fan(t) ~ exp(—aA=t)
Fap 0 0.05 01 o2 02k
[ 1 I ] ::g Faa —
2000 w R
0 ‘ ‘
-0.4 -0.2 0 0.2 0.4
1500 A=2(,-0,)
o
£ 1000
F
500 A

0
-0.4 -0.2 0 0.2 0.4

A=2(w,-0y)
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: X107 | ‘ ]
X ] e
» Singularat A =0 02} ]
. . 22 R
@ Time evolution — oL T
Fab(t) ~ exp(—ai?t)
Fap 0 0.05 01 o2 02k
[ S— j | 5 Fpu —
2000 - Fop
(—)0.4 -0.2 0 0.2 0.4
1500 -A=2(0y,-0,)
£ 1000 @ Always some coherence
= » (individual always wrong)
500 A @ Fap~ Faa, Fpponlyat A =0
. N
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Toy problem: Redfield theory

Unsecularised Redfield theory:

atp = —I[H ,0] + Z 901 @j |: (W’,/WT [p7 wij]-i-)

ff

K] (28]t~ 1 bid]1) |
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Toy problem: Redfield theory

Unsecularised Redfield theory:

atp = —I[H p] + Z QOI @j |: (2¢,P¢T [p7 wij]+>

ff

K] (28]t~ 1 bid]1) |

@ Compare to exact solution: Fj = (1)1
0.1 ‘
t=200 0.011) A=0.2
s | I = | [ :,»‘I N A )
= 005 I = ol [{[{\\N\AAAs~——
2] [ | Q \ Ty bV
~ | ~ Iy Exact
O | A AAA \ Redfield
' ] YV -0.01f
04 02 0 02 04 0 200 400 600 800
A=2(0,-0,) Time
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Toy problem: Secularisation and stability

=} = = = = DAl
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Toy problem: Secularisation and stability

@ Non-Linblad form: negative eigenvalues of L};*.
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Toy problem: Secularisation and stability

@ Non-Linblad form: negative eigenvalues of L};*.

— Non-positivity of density matrix,
— Unstable (unbounded growth).

@ Check stability: consider f = (Faa, Fpp, R[Fab), S[Fab])

of = —MIf + f,

0.02

@ Eigenvalues of M exist in closed form:

Z oo

» Unstable (negative only if dJ(v)/dv > 1
— Markov breakdown)

0
0 02 04 06 08 1 12 14
v
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Toy problem: Secularisation and stability

@ Non-Linblad form: negative eigenvalues of L};*.

— Non-positivity of density matrix,
— Unstable (unbounded growth).

@ Check stability: consider f = (Faa, Fpp, R[Fab), S[Fab])

off = —Mf +f
0.02
@ Eigenvalues of M exist in closed form: \
» Unstable (negative only if dJ(v)/dv >1 =
— Markov breakdown)
0O 6.2 6.4 6.6 08 1 12 14

v
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?

@ Hints it is not:

» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
@ Hints it is not:
» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA ’12; Hell et al. PRB ’14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”

» Here, (X) = ©2Faa + ©3Fbb — 2p0appF.,. Fails
@ Alternate approach: 2107
» BR assumes j(t) is “slow” in
interaction picture
» Asymptotically p(t) is steady in
Schrédinger picture 202
» Assume instead p(t) is slow in o2
Schrédinger picture 0
-0.4 -0.2 0 0.2 0.4

@ “Schrédinger picture Bloch Redfield.” A=2A(0yy-,)

» Correct A2 expansion
» Satisfies sum rule
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Summary

° Transverse fleld Ismg model

Joshi et al. PRA’13
o Rabl Hubbard model

Schiré et al. arXiv:1503.04456
° CoIIectlve effects in dephasmg

Nissen et al. PRL '13; Eastham et al. arXiv:1508.04744

Jonathan Keeling Collective dissipative behaviour

Vienna, January 2016

34



Questions

@ Collective dynamics beyond local dissipation.

» Many site analogues of Spin-Boson transitions?
» Critical behaviour in open lattice models — demonstrate non
Hohenberg-Halperin classes of models.

@ Bistability, limit cycles, beyond mean-field
@ Organizing principles of driven-dissipative system attractors
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