Collective behaviour and driven-dissipative systems

Acknowledgements

GROUP (&ALUMNI):

COLLABORATORS: Fazio (Pisa & CQT), Schiro (CNRS), Tureci (Princeton), Eastham (TCD), Lovett (St Andrews).

FUNDING:

The Leverhulme Trust

- Effects of dissipation on collective behaviour
 - Coherently driven JCHM (Mean-Field)
 - Parametrically driven BHM (MF and MPO)
 - Parametrically driven RHM (MF and MPO)
- Effects of collective behaviour on dissipation
 - Coupled qubit-cavity systems
 - Collective coupling to baths

Coherently pumped JCHM

$$H = -\frac{J}{z} \sum_{ij} \psi_i^{\dagger} \psi_j + \sum_i \frac{\Delta}{2} \sigma_i^z + g(\psi_i^{\dagger} \sigma_i^- + \text{H.c.}) + f(\psi_i e^{i\omega_L t} + \text{H.c.})$$

$$\partial_t \rho = -i[H, \rho] - \frac{\kappa}{2} \mathcal{L}_{\psi}[\rho] - \frac{\gamma}{2} \mathcal{L}_{\sigma^-}[\rho]$$

Coherently pumped single cavity [Bishop et al. Nat. Phys '09]

$$H = rac{\Delta}{2}\sigma^z + g(\psi^\dagger \sigma^- + ext{H.c.}) + f(\psi e^{i\omega_{pump}t} + ext{H.c.})$$
 $\partial_t \rho = -i[H,
ho] - rac{\kappa}{2} L_{\psi}[
ho] - rac{\gamma}{2} L_{\sigma^-}[
ho]$

• Anti-resonance in $|\langle \psi \rangle|$.

Effective 2LS:

|Empty\.|1 polariton\

Coherently pumped single cavity [Bishop et al. Nat. Phys '09]

$$H = rac{\Delta}{2}\sigma^z + g(\psi^\dagger\sigma^- + ext{H.c.}) + f(\psi e^{i\omega_{pump}t} + ext{H.c.})$$
 $\partial_t
ho = -i[H,
ho] - rac{\kappa}{2} L_{\psi}[
ho] - rac{\gamma}{2} L_{\sigma^-}[
ho]$

- Anti-resonance in $|\langle \psi \rangle|$.
- Effective 2LS: |Empty>, |1 polariton>

Chose detuning a la Dicke model

Bistability at intermediate J
 More/less localised states
 Connects to Dicke limit

Chose detuning a la Dicke model

Chose detuning a la Dicke model

 ω_{pump}/g

Chose detuning a la Dicke model

Chose detuning a la Dicke model

- Bistability at intermediate J
 - More/less localised states
 - Connects to Dicke limit

Coherent pumped array - disorder

- Effect of disorder, $\Delta \to \Delta_i$
 - Distribution of \(\psi \text{Washes out bistable jump} \)

[Kulaitis et al. PRA, '13]

Coherent pumped array - disorder

- Effect of disorder, $\Delta \rightarrow \Delta_i$
 - Distribution of \(\psi \text{Washes out bistable jump} \)
- Bistability near resonance phase of ψ depends on Δ_i

[Kulaitis et al. PRA, '13]

Coherent pumped array - disorder

- Effect of disorder, $\Delta \to \Delta_i$
 - Distribution of \(\psi \text{Washes out bistable jump} \)
- Bistability near resonance phase of ψ depends on Δ_i
- Complex ψ distribution

[Kulaitis et al. PRA, '13]

- Crucial question: what can we expect from true ρ ?
 - No bistability (replaced by bimodality)

$$\rho_{SS} = \sum_{i} W_{i} \rho_{MF_{i}}$$

Slow approach to steady state.

- Crucial question: what can we expect from true ρ ?
 - No bistability (replaced by bimodality)

$$\rho_{SS} = \sum_{i} W_{i} \rho_{MF_{i}}$$

Slow approach to steady state.

- But...
 - Density matrix is ensemble average of experiments
 - cf Interference fringes of BEC. [Leggett, RMP '01] $|\psi_1(r) + \psi_2(r)|^2 = \ldots + \sqrt{I_1 I_2} \cos(kr + \Delta\phi)$
 - * Experiment: yes.
 - ★ Density matrix: no. $\Delta \phi$, $\langle \cos(kr + \Delta \phi) \rangle_{\Delta \phi} = 0$.

- Crucial question: what can we expect from true ρ ?
 - No bistability (replaced by bimodality)

$$\rho_{SS} = \sum_{i} W_{i} \rho_{MF_{i}}$$

Slow approach to steady state.

- But...
 - Density matrix is ensemble average of experiments
 - cf Interference fringes of BEC. [Leggett, RMP '01] $|\psi_1(r) + \psi_2(r)|^2 = \ldots + \sqrt{I_1 I_2} \cos(kr + \Delta\phi)$
 - * Experiment: yes.
 - ★ Density matrix: no. $\Delta \phi$, $\langle \cos(kr + \Delta \phi) \rangle_{\Delta \phi} = 0$.
 - Measuring system collapses to state

- Crucial question: what can we expect from true ρ ?
 - No bistability (replaced by bimodality)

$$\rho_{SS} = \sum_{i} W_{i} \rho_{MF_{i}}$$

Slow approach to steady state.

- But...
 - Density matrix is ensemble average of experiments
 - cf Interference fringes of BEC. [Leggett, RMP '01] $|\psi_1(r) + \psi_2(r)|^2 = \ldots + \sqrt{I_1 I_2} \cos(kr + \Delta \phi)$
 - * Experiment: yes.
 - ★ Density matrix: no. $\Delta \phi$, $\langle \cos(kr + \Delta \phi) \rangle_{\Delta \phi} = 0$.
 - Measuring system collapses to state
- Need higher order correlations probability/Wigner distribution

Effects of dissipation on collective behaviour

- Effects of dissipation on collective behaviour
 - Coherently driven JCHM (Mean-Field)
 - Parametrically driven BHM (MF and MPO)
 - Parametrically driven RHM (MF and MPO)
- Effects of collective behaviour on dissipation
 - Coupled qubit-cavity systems
 - Collective coupling to baths

Parametrically pumped BHM

$$H = -\frac{J}{z} \sum_{\langle ij \rangle} \psi_i^{\dagger} \psi_j + \sum_i \left[\omega_c \psi_i^{\dagger} \psi_i + U \psi_i^{\dagger} \psi_i^{\dagger} \psi_i \psi_i - \Omega \left(\psi_i^{\dagger} \psi_{i+1}^{\dagger} e^{-2i\omega_p t} + \text{H.c.} \right) \right]$$

Parametrically pumped BHM

$$H = -\frac{J}{z} \sum_{\langle ij \rangle} \psi_i^{\dagger} \psi_j + \sum_i \left[\omega_c \psi_i^{\dagger} \psi_i + U \psi_i^{\dagger} \psi_i^{\dagger} \psi_i \psi_i - \Omega \left(\psi_i^{\dagger} \psi_{i+1}^{\dagger} e^{-2i\omega_\rho t} + \text{H.c.} \right) \right]$$

Rotating frame, blockade approximation, rescale:

$$H = -J \sum \left[\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- + g \tau_i^z + \Delta \left(\tau_i^+ \tau_{i+1}^+ + \tau_{i+1}^- \tau_i^- \right) \right]$$

Parametrically pumped BHM

$$H = -\frac{J}{z} \sum_{\langle ij \rangle} \psi_i^{\dagger} \psi_j + \sum_i \left[\omega_c \psi_i^{\dagger} \psi_i + U \psi_i^{\dagger} \psi_i^{\dagger} \psi_i \psi_i - \Omega \left(\psi_i^{\dagger} \psi_{i+1}^{\dagger} e^{-2i\omega_p t} + \text{H.c.} \right) \right]$$

Rotating frame, blockade approximation, rescale:

$$H = -J \sum_{i} \left[\tau_{i}^{+} \tau_{i+1}^{-} + \tau_{i+1}^{+} \tau_{i}^{-} + g \tau_{i}^{z} + \Delta \left(\tau_{i}^{+} \tau_{i+1}^{+} + \tau_{i+1}^{-} \tau_{i}^{-} \right) \right]$$
$$\partial_{t} \rho = -i[H, \rho] + \sum_{i} \kappa \mathcal{L}[\tau_{i}^{-}]$$

[Bardyn & Immamoglu, PRL '12]

Parametric pumping – open system

$$H = -J \sum_{i} \left[\tau_{i}^{+} \tau_{i+1}^{-} + \tau_{i+1}^{+} \tau_{i}^{-} + g \tau_{i}^{z} + \Delta \left(\tau_{i}^{+} \tau_{i+1}^{+} + \tau_{i+1}^{-} \tau_{i}^{-} \right) \right]$$
$$\partial_{t} \rho = -i[H, \rho] + \sum_{i} \kappa \mathcal{L}[\tau_{i}^{-}]$$

• Mean-field EOM: $\partial_t \langle \tau_i^{\alpha} \rangle = F_{\alpha}(\langle \tau_{i-1}^{\beta} \rangle, \langle \tau_i^{\beta} \rangle, \langle \tau_{i+1}^{\beta} \rangle)$

11

Parametric pumping – open system

$$H = -J \sum_{i} \left[\tau_{i}^{+} \tau_{i+1}^{-} + \tau_{i+1}^{+} \tau_{i}^{-} + g \tau_{i}^{z} + \Delta \left(\tau_{i}^{+} \tau_{i+1}^{+} + \tau_{i+1}^{-} \tau_{i}^{-} \right) \right]$$
$$\partial_{t} \rho = -i[H, \rho] + \sum_{i} \kappa \mathcal{L}[\tau_{i}^{-}]$$

- Mean-field EOM: $\partial_t \langle \tau_i^{\alpha} \rangle = F_{\alpha}(\langle \tau_{i-1}^{\beta} \rangle, \langle \tau_i^{\beta} \rangle, \langle \tau_{i+1}^{\beta} \rangle)$
- Dynamical attractors, linear stability:

11

• Linear stability, fluctuation $\sim \exp(-i\nu_k t + ikr_i)$ Linear stability

 $\nu_k = -i\kappa \pm 2J\sqrt{g^2 + 2g\cos k + (1-\Delta^2)\cos^2 k}$

 \bullet $g \ll -1$, Dissipation matches ground state

 \bullet $\sigma \gg +1$, Dissipation matches max energy

▶ Most unstable mode, $k = \pi$

• Linear stability, fluctuation $\sim \exp(-i\nu_k t + ikr_i)$ Linear stability

$$\nu_k = -i\kappa \pm 2J\sqrt{g^2 + 2g\cos k + (1-\Delta^2)\cos^2 k}$$

• Linear stability, fluctuation $\sim \exp(-i\nu_k t + ikr_i)$ Linear stability

$$\nu_k = -i\kappa \pm 2J\sqrt{g^2 + 2g\cos k + (1-\Delta^2)\cos^2 k}$$

- $g \ll -1$, Dissipation matches ground state
 - ▶ Most unstable mode, k = 0

ullet Linear stability, fluctuation $\sim \exp(-i
u_k t + ikr_i)$ Linear stability

$$\nu_k = -i\kappa \pm 2J\sqrt{g^2 + 2g\cos k + (1-\Delta^2)\cos^2 k}$$

- ullet $g \ll -1$, Dissipation matches ground state
 - ▶ Most unstable mode, k = 0
- g ≫ +1, Dissipation matches max energy
 - ▶ Most unstable mode, $k = \pi$

[Joshi, Nissen, Keeling, PRA '13]

Beyond mean-field

MPO for density matrices.
 Steady state only, 40 cavities, numerically converged

Beyond mean-field

- MPO for density matrices.
 Steady state only, 40 cavities, numerically converged
- No broken symmetry correlators: $\Delta = 1, \kappa = 0.5J$:

Beyond mean-field

- MPO for density matrices.
 Steady state only, 40 cavities, numerically converged
- No broken symmetry correlators: $\Delta = 1, \kappa = 0.5J$:

Correlations

• AFM vs FM from sign of g ($\Delta = 1$)

 Short range, finite susceptibility

• $\Delta \to 0$, Analytic spin-wave, $\left| \langle \tau_i^- \tau_{i+}^{\pm} \rangle \right| \propto \exp(-\xi_c l)$

Correlations

• AFM vs FM from sign of g ($\Delta = 1$)

 Short range, finite susceptibility

• $\Delta \to 0$, Analytic spin-wave, $\left| \langle au_i^- au_{i+I}^\pm
angle
ight| \propto \exp(-\xi_c I)$

Correlations

• AFM vs FM from sign of g ($\Delta = 1$)

 Short range, finite susceptibility

 \bullet $\Delta \to 0$, Analytic spin-wave,

$$\begin{vmatrix} \langle \tau_i^- \tau_{i+1}^\pm \rangle \end{vmatrix} \propto \exp(-\xi_c I)$$

Effects of dissipation on collective behaviour

- Effects of dissipation on collective behaviour
 - Coherently driven JCHM (Mean-Field)
 - Parametrically driven BHM (MF and MPO)
 - Parametrically driven RHM (MF and MPO)
- Effects of collective behaviour on dissipation
 - Coupled qubit-cavity systems
 - Collective coupling to baths

Rabi Hubbard model

$$egin{aligned} H &= -J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i h_i^{ ext{Rabi}} \ h^{ ext{Rabi}} &= \omega \psi^\dagger \psi + rac{\omega_0}{2} \sigma^{z} + \left[\psi^\dagger (g \sigma^- + g' \sigma^+) + ext{H.c.}
ight] \end{aligned}$$

 $\omega = \omega_{\text{cavity}} - \omega_{\text{pump}}$

g, g' separately tunable

Rabi Hubbard model

$$egin{aligned} H &= -J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i h_i^{\mathsf{Rabi}} \ h^{\mathsf{Rabi}} &= \omega \psi^\dagger \psi + rac{\omega_0}{2} \sigma^{\mathsf{Z}} + \left[\psi^\dagger (g \sigma^- + g' \sigma^+) + \mathsf{H.c.}
ight] \end{aligned}$$

$$\bullet \ \omega = \omega_{\rm cavity} - \omega_{\rm pump}$$

Rabi Hubbard model

$$egin{aligned} H &= -J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i h_i^{ ext{Rabi}} \ h^{ ext{Rabi}} &= \omega \psi^\dagger \psi + rac{\omega_0}{2} \sigma^{z} + \left[\psi^\dagger (g \sigma^- + g' \sigma^+) + ext{H.c.}
ight] \end{aligned}$$

- $\omega = \omega_{\text{cavity}} \omega_{\text{pump}}$
- g, g' separately tunable

Rabi Hubbard model

$$egin{aligned} \mathcal{H} &= -J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i h_i^{\mathsf{Rabi}} \ h^{\mathsf{Rabi}} &= \omega \psi^\dagger \psi + rac{\omega_0}{2} \sigma^{\mathsf{Z}} + \left[\psi^\dagger (g \sigma^- + g' \sigma^+) + \mathsf{H.c.}
ight] \end{aligned}$$

- $\omega = \omega_{\text{cavity}} \omega_{\text{pump}}$
- g, g' separately tunable

$$\dot{\rho} = -i[H, \rho] + \sum_{i} \kappa \mathcal{L}[\psi_{i}] + \gamma \mathcal{L}[\sigma_{i}^{-}]$$

Discrete Z₂ symmetry
 Parity Mott lobes

 g = g', never degenerate never superfluid

- Discrete Z₂ symmetry
 - Parity Mott lobes

- Discrete Z₂ symmetry
 - Parity Mott lobes

- Discrete Z₂ symmetry
 - Parity Mott lobes

 g = g', never degenerate never superfluid

Mean field theory — still large Hilbert space.

Mean field theory — still large Hilbert space.

• Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} - i\nu_k t} + \text{H.c.})$

Follow [Boité et al., PRA 2014]

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} i\nu_k t} + \text{H.c.})$
- $\nu_{\mathbf{k}}$ Eigenvalues of $M = M_0 t_{\mathbf{k}} M_1$, $t_{\mathbf{k}} = -2J \cos(k)$
- Unstable if $\Im[\nu_{\mathbf{k}}] > 0$

Follow [Boité et al., PRA 2014]

Given J, $|I_k| < 2J$ First instability $k = 0, \pi$

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} i\nu_k t} + \text{H.c.})$
- $\nu_{\mathbf{k}}$ Eigenvalues of $M = M_0 t_{\mathbf{k}} M_1$, $t_{\mathbf{k}} = -2J \cos(k)$
- Unstable if $\Im[\nu_{\mathbf{k}}] > 0$

Follow [Boité et al., PRA 2014]

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} i\nu_k t} + \text{H.c.})$
- $\nu_{\mathbf{k}}$ Eigenvalues of $M = M_0 t_{\mathbf{k}} M_1$, $t_{\mathbf{k}} = -2J \cos(k)$
- Unstable if $\Im[\nu_{\mathbf{k}}] > 0$

Follow [Boité et al., PRA 2014]

• Given J, $|t_{\mathbf{k}}| < 2J$

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} i\nu_k t} + \text{H.c.})$
- $\nu_{\mathbf{k}}$ Eigenvalues of $M = M_0 t_{\mathbf{k}} M_1$, $t_{\mathbf{k}} = -2J \cos(k)$
- Unstable if $\Im[\nu_{\mathbf{k}}] > 0$

Follow [Boité et al., PRA 2014]

- Given J, $|t_{\mathbf{k}}| < 2J$
- First instability $k = 0, \pi$

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: $\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i\mathbf{k}\cdot\mathbf{n} i\nu_k t} + \text{H.c.})$
- $\nu_{\mathbf{k}}$ Eigenvalues of $M = M_0 t_{\mathbf{k}} M_1$, $t_{\mathbf{k}} = -2J \cos(k)$
- Unstable if $\Im[\nu_{\mathbf{k}}] > 0$

Follow [Boité et al., PRA 2014]

- Given J, $|t_{\mathbf{k}}| < 2J$
- First instability $k = 0, \pi$
- $k \to \pi/2$ at large J

Stability phase diagram:

[Schiró et al. arXiv:1503.04456]

Stability phase diagram:

Steady state correlations:

[Schiró et al. arXiv:1503.04456]

Stability phase diagram:

[Schiró et al. arXiv:1503.04456]

Steady state correlations:

$$\dots$$
 vs $|i-j|=\updownarrow$

Stability phase diagram:

[Schiró et al. arXiv:1503.04456]

Steady state correlations:

$$\dots$$
 vs $|i-j|=\updownarrow$

Stability phase diagram:

[Schiró et al. arXiv:1503.04456]

Steady state correlations:

$$\dots$$
 vs $|i-j|=\updownarrow$

Linear stability - limit cycles

• If $\nu_k = \pm \nu_k' + i\nu_k''$ at instability \rightarrow Limit Cycle [Lee *et al.* PRA '11, Jin *et al.* PRL '13, Ludwig & Marquard PRL '13, Chan *et al.* arXiV:1501.00979]

[Schiró et al. arXiv:1503.04456]

Linear stability - limit cycles

• If $\nu_k=\pm\nu_k'+i\nu_k''$ at instability \to Limit Cycle [Lee *et al.* PRA '11, Jin *et al.* PRL '13, Ludwig & Marquard PRL '13, Chan *et al.* arXiV:1501.00979]

[Schiró et al. arXiv:1503.04456]

Compare phase boundaries

- Ground state, $J_{\rm crit} \sim e^{-2g/\omega}$ at $g \gg \omega$
- Dissipation means $J_{crit} > J_{min}$

Compare phase boundaries

Driven dissipative: $g/\omega_0 1$ Ordered
Normal

0.4

 J/ω_0

0.6

0.8

0.2

ullet Ground state, $J_{
m crit}\sim e^{-2g^2/\omega^2}$ at $g\gg\omega$

Compare phase boundaries

- Ground state, $J_{\rm crit} \sim e^{-2g^2/\omega^2}$ at $g \gg \omega$
- ullet Dissipation means $J_{
 m crit} > J_{
 m min}$

21

Consider effective spinor model

$$H = \sum_{i} \frac{\Delta}{2} \tau_{i}^{z} - \sum_{\langle ij \rangle} \tilde{J}_{x} \tau_{i}^{x} \tau_{i}^{x} + \tilde{J}_{y} \tau_{i}^{y} \tau_{i}^{y}, \qquad \dot{\rho} = -i[H, \rho] + \dots$$

Level populations

Consider effective spinor model

$$H = \sum_{i} \frac{\Delta}{2} \tau_{i}^{z} - \sum_{\langle ij \rangle} \tilde{J}_{x} \tau_{i}^{x} \tau_{i}^{x} + \tilde{J}_{y} \tau_{i}^{y} \tau_{i}^{y}, \qquad \dot{\rho} = -i[H, \rho] + \dots$$

Level populations:

 \bullet If $\Delta \sim \omega_0 e^{-2g^2/\omega^2} \ll 1$ $J_{\rm crit} \simeq \frac{\pi - g}{\omega^3} + \frac{\omega}{16g^2}$

Consider effective spinor model

$$H = \sum_{i} \frac{\Delta}{2} \tau_{i}^{z} - \sum_{\langle ij \rangle} \tilde{J}_{x} \tau_{i}^{x} \tau_{i}^{x} + \tilde{J}_{y} \tau_{i}^{y} \tau_{i}^{y}, \qquad \dot{\rho} = -i[H, \rho] + \dots$$

Level populations:

• If $\Delta \sim \omega_0 e^{-2g^2/\omega^2} \ll 1$

$$J_{
m crit} \simeq rac{\kappa^2 g^2}{\omega^3} + rac{\omega^3}{16 g^2}$$

• For $g' \neq g$, Δ can swap sign

If levels/populations in wrong order. FM/AFM switch.

ullet For g'
eq g, Δ can swap sign . . . and loss can invert populatoin

If levels/populations in wrong order. FM/AFM switch.

ullet For g'
eq g, Δ can swap sign . . . and loss can invert populatoin

• If levels/populations in wrong order, FM/AFM switch.

• For $g' \neq g$, Δ can swap sign . . . and loss can invert populatoin

• If levels/populations in wrong order, FM/AFM switch.

Collective dissipation

- Effects of dissipation on collective behaviour
 - Coherently driven JCHM (Mean-Field)
 - Parametrically driven BHM (MF and MPO)
 - Parametrically driven RHM (MF and MPO)
- Effects of collective behaviour on dissipation
 - Coupled qubit-cavity systems
 - Collective coupling to baths

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - ► [Ciuti & Carusotto PRA '09] Dicke SR and emission

- Bath density of states $J(\nu)=\sum_{a}\gamma_{a}^{\epsilon}\delta(\nu-\beta_{g})\propto 1/\nu$
- Spectrum ϵ_{α} of H_0 : Linewidth $\propto J(\epsilon_{\alpha} \epsilon_{\beta})$

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ

- Bath density of states $J(\nu) = \sum_{a} \gamma_{a}^{2} \delta(\nu \beta_{a}) \propto 1/\nu$
- Spectrum ϵ_{α} of H_0 : Linewidth $\propto J(\epsilon_{\alpha} \epsilon_{\beta})$

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - ► [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition → soft modes

- Bath density of states $J(\nu) = \sum_{\sigma} \gamma_{\sigma}^2 \delta(\nu \beta_{\sigma}) \propto 1/\nu$
- Spectrum ϵ_{α} of H_0 : Linewidth $\propto J(\epsilon_{\alpha} \epsilon_{\beta})$

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - ▶ [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition → soft modes

Example: Dicke model linewidth:

$$H = \omega \psi^{\dagger} \psi + \sum_{i=1}^{N} \frac{\omega_{0}}{2} \sigma_{i}^{z} + g \left(\sigma_{i}^{+} \psi + \text{h.c.} \right) + \sum_{i} \sigma_{i}^{z} \sum_{q} \gamma_{q} \left(b_{q}^{\dagger} + b_{q} \right) + \sum_{q} \beta_{q} b_{iq}^{\dagger} b_{q}.$$

Bath density of states J(ν) = ∑_q γ_q²δ(ν − β_q) ∝ 1/ν
 Spectrum ε_α of H₀: Linewidth ∝ J(ε_α − ε_β)

25

Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - ► [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition → soft modes

Example: Dicke model linewidth:

$$\begin{split} H &= \omega \psi^{\dagger} \psi + \sum_{i=1}^{N} \frac{\omega_{0}}{2} \sigma_{i}^{z} + g \left(\sigma_{i}^{+} \psi + \text{h.c.} \right) \\ &+ \sum_{i} \sigma_{i}^{z} \sum_{q} \gamma_{q} \left(b_{q}^{\dagger} + b_{q} \right) + \sum_{q} \beta_{q} b_{iq}^{\dagger} b_{q}. \end{split}$$

• Bath density of states $J(\nu) = \sum_{q} \gamma_{q}^{2} \delta(\nu - \beta_{q}) \propto 1/\nu$

Vienna, January 2016

Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - ▶ [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition → soft modes

Example: Dicke model linewidth:

$$H = \omega \psi^{\dagger} \psi + \sum_{i=1}^{N} \frac{\omega_{0}}{2} \sigma_{i}^{z} + g \left(\sigma_{i}^{+} \psi + \text{h.c.} \right) + \sum_{i} \sigma_{i}^{z} \sum_{q} \gamma_{q} \left(b_{q}^{\dagger} + b_{q} \right) + \sum_{q} \beta_{q} b_{iq}^{\dagger} b_{q}.$$

- Bath density of states $J(\nu) = \sum_{q} \gamma_q^2 \delta(\nu \beta_q) \propto 1/\nu$
- Spectrum ϵ_{α} of H_0 : Linewidth $\propto J(\epsilon_{\alpha} \epsilon_{\beta})$

[Nissen, Fink et al. PRL '13]

Collective dephasing of transmons

- Expt: collective bath
- Many baths cross terms, non-monotonic

[Nissen, Fink et al. PRL '13]

Collective dephasing of transmons

- Expt: collective bath
- Many baths cross terms, non-monotonic

• Detuing dependence of linewidths — $\sqrt{\Delta^2 + Ng^2}$.

[Nissen, Fink et al. PRL '13]

Effects of collective behaviour on dissipation

- Effects of dissipation on collective behaviour
 - Coherently driven JCHM (Mean-Field)
 - Parametrically driven BHM (MF and MPO)
 - Parametrically driven RHM (MF and MPO)
- Effects of collective behaviour on dissipation
 - Coupled qubit-cavity systems
 - Collective coupling to baths

Toy problem: two bosonic modes

• Basic problem: Emission from thermal bath

$$H = \omega_a \hat{\psi}_a^{\dagger} \hat{\psi}_a + \omega_b \hat{\psi}_b^{\dagger} \hat{\psi}_b + H_{\text{Bath}} + (\varphi_a^* \hat{\psi}_a^{\dagger} + \varphi_b^* \hat{\psi}_b^{\dagger}) \sum_i g_i \hat{c}_i + \text{H.c.}$$

Toy problem: naïve solutions

- Two "expected" behaviours:
 - At resonance: "weak lasing" coupling to bath dominates

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = \Gamma^{\downarrow}\mathcal{L}[\varphi_{a}\hat{\psi}_{a} + \varphi_{b}\hat{\psi}_{b}] + \Gamma^{\uparrow}\mathcal{L}[\varphi_{a}^{*}\hat{\psi}_{a}^{\dagger} + \varphi_{b}^{*}\hat{\psi}_{b}^{\dagger}]$$

Far from resonance: pointer states are eigenstates

$$rac{\partial}{\partial t}
ho = \sum_{l=a,b} \Gamma_{l}^{l} \mathcal{L}[\hat{\psi}_{l}] + \Gamma_{l}^{\uparrow} \mathcal{L}[\hat{\psi}_{l}^{\dagger}]$$

Explicit derivation → Redfield theory

$$\partial_l \rho = -i[\hat{H}, \rho] + \sum L_{ij}^1 \left(2\hat{\psi}_j \rho \hat{\psi}_j^\dagger - [\rho, \hat{\psi}_j^\dagger \hat{\psi}_j]_+ \right]$$

Toy problem: naïve solutions

- Two "expected" behaviours:
 - At resonance: "weak lasing" coupling to bath dominates

$$\frac{d}{dt}\rho = \Gamma^{\downarrow} \mathcal{L}[\varphi_{a}\hat{\psi}_{a} + \varphi_{b}\hat{\psi}_{b}] + \Gamma^{\uparrow} \mathcal{L}[\varphi_{a}^{*}\hat{\psi}_{a}^{\dagger} + \varphi_{b}^{*}\hat{\psi}_{b}^{\dagger}]$$

Far from resonance: pointer states are eigenstates

$$\frac{d}{dt}\rho = \sum_{i=a,b} \Gamma_i^{\downarrow} \mathcal{L}[\hat{\psi}_i] + \Gamma_i^{\uparrow} \mathcal{L}[\hat{\psi}_i^{\dagger}]$$

- Explicit derivation → Redfield theory
 - $\partial t
 ho = -i[\hat{H},
 ho] + \sum L_{ll}^{\dagger} \left(2\hat{\psi}_{l}
 ho \hat{\psi}_{l}^{\dagger} [
 ho, \hat{\psi}_{l}^{\dagger} \hat{\psi}_{l}]_{+} \right)$

Toy problem: naïve solutions

- Two "expected" behaviours:
 - At resonance: "weak lasing" coupling to bath dominates

$$\frac{d}{dt}\rho = \Gamma^{\downarrow} \mathcal{L}[\varphi_{a}\hat{\psi}_{a} + \varphi_{b}\hat{\psi}_{b}] + \Gamma^{\uparrow} \mathcal{L}[\varphi_{a}^{*}\hat{\psi}_{a}^{\dagger} + \varphi_{b}^{*}\hat{\psi}_{b}^{\dagger}]$$

Far from resonance: pointer states are eigenstates

$$\frac{d}{dt}\rho = \sum_{i=a,b} \Gamma_i^{\downarrow} \mathcal{L}[\hat{\psi}_i] + \Gamma_i^{\uparrow} \mathcal{L}[\hat{\psi}_i^{\dagger}]$$

Explicit derivation → Redfield theory

$$\begin{split} \partial_t \rho &= -i[\hat{H}, \rho] + \sum_{ij} L_{ij}^{\downarrow} \left(2\hat{\psi}_j \rho \hat{\psi}_i^{\dagger} - [\rho, \hat{\psi}_i^{\dagger} \hat{\psi}_j]_{+} \right) \\ &+ \sum_{ij} L_{ij}^{\uparrow} \left(2\hat{\psi}_j^{\dagger} \rho \hat{\psi}_i - [\rho, \hat{\psi}_i \hat{\psi}_j^{\dagger}]_{+} \right). \end{split}$$

- Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^\dagger(t) \hat{\psi}_j(t) \rangle$
- Steady state
- Time evolution
 - $F_{ab}(t) \sim \exp(-\alpha \Delta^2 t)$

- Always some coherence
 - (individual always wrong)
 - ullet $F_{ab}\sim F_{aa}, F_{bb}$ only at $\Delta=0$

• Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^\dagger(t) \hat{\psi}_j(t) \rangle$

Steady state:

Always some coherence
 (individual always wrong)

- Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^\dagger(t) \hat{\psi}_j(t) \rangle$
- Steady state:
 - ▶ Singular at $\Delta = 0$

Always some coherence

(individual always wrong)

ullet $F_{ab}\sim F_{aa}, F_{bb}$ only at $\Delta=0$

- Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^{\dagger}(t) \hat{\psi}_i(t) \rangle$
- Steady state:
 - ▶ Singular at $\Delta = 0$
- Time evolution —

$$F_{ab}(t) \sim \exp(-\alpha \Delta^2 t)$$

- Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^{\dagger}(t) \hat{\psi}_i(t) \rangle$
- Steady state:
 - ▶ Singular at $\Delta = 0$
- Time evolution —

$$F_{ab}(t) \sim \exp(-\alpha \Delta^2 t)$$

- Always some coherence
 - (individual always wrong)

- Solve via Laplace transform. Find $F_{ij}(t) = \langle \hat{\psi}_i^{\dagger}(t) \hat{\psi}_j(t) \rangle$
- Steady state:
 - Singular at $\Delta = 0$
- Time evolution —

$$F_{ab}(t) \sim \exp(-\alpha \Delta^2 t)$$

- Always some coherence
 - (individual always wrong)
- $F_{ab} \sim F_{aa}, F_{bb}$ only at $\Delta = 0$

Toy problem: Redfield theory

Unsecularised Redfield theory:

$$\begin{split} \partial_t \rho &= -i[\hat{H},\rho] + \sum_{ij} \varphi_i^* \varphi_j \bigg[K_{ij}^\downarrow \left(2 \hat{\psi}_j \rho \hat{\psi}_i^\dagger - [\rho, \hat{\psi}_i^\dagger \hat{\psi}_j]_+ \right) \\ &\quad + K_{ij}^\uparrow \left(2 \hat{\psi}_j^\dagger \rho \hat{\psi}_i - [\rho, \hat{\psi}_i \hat{\psi}_j^\dagger]_+ \right) \bigg]. \end{split}$$

Toy problem: Redfield theory

Unsecularised Redfield theory:

$$\begin{split} \partial_t \rho &= -i[\hat{H},\rho] + \sum_{ij} \varphi_i^* \varphi_j \bigg[\mathsf{K}_{ij}^\downarrow \left(2 \hat{\psi}_j \rho \hat{\psi}_i^\dagger - [\rho, \hat{\psi}_i^\dagger \hat{\psi}_j]_+ \right) \\ &\quad + \mathsf{K}_{ij}^\uparrow \left(2 \hat{\psi}_j^\dagger \rho \hat{\psi}_i - [\rho, \hat{\psi}_i \hat{\psi}_j^\dagger]_+ \right) \bigg]. \end{split}$$

• Compare to exact solution: $F_{ij} = \langle \hat{\psi}_i^\dagger \hat{\psi}_j \rangle$

Non-Linblad form: negative eigenvalues of $L_{jj}^{T,1}$

• Check stability: consider $f = (F_{aa}, F_{bb}, \Re[F_{ab}], \Im[F_{ab}])$

$$\partial_t \mathbf{f} = -\mathbf{M}\mathbf{f} + \mathbf{f}_0$$

- Eigenvalues of M exist in closed form:
 - Unstable (negative only if $dJ(\nu)/d\nu \gg 1$ — Markov breakdown)

• Non-Linblad form: negative eigenvalues of $L_{ij}^{\uparrow,\downarrow}$.

```
    Non-positivity of density matrix,
    Unstable (unbounded growth).
```

• Check stability: consider $f = (F_{aa}, F_{bb}, \Re[F_{ab}], \Im[F_{ab}]$

$$\partial_t \mathbf{f} = -\mathbf{M}\mathbf{f} + \mathbf{f}_0$$

- Ligenvalues of M exist in closed form:
 - Unstable (negative only if $dJ(\nu)/d\nu \gg 1$ — Markov breakdown)

- Non-Linblad form: negative eigenvalues of $L_{ij}^{\uparrow,\downarrow}$.
 - $\,\,\,\,\,\,\,\,\,\,\,$ Non-positivity of density matrix,
- Check stability: consider $f = (F_{aa}, F_{bb}, \Re[F_{ab}], \Im[F_{ab}])$
 - $\partial_t \mathbf{f} = -\mathbf{M}\mathbf{f} + \mathbf{f}_0$
- Eigenvalues of M exist in closed form:
 - ► Unstable (negative only if $dJ(\nu)/d\nu \gg 1$ — Markov breakdown)

- Non-Linblad form: negative eigenvalues of $L_{ij}^{\uparrow,\downarrow}$.
 - → Non-positivity of density matrix,
 - \rightarrow Unstable (unbounded growth).

- Non-Linblad form: negative eigenvalues of $L_{ij}^{\uparrow,\downarrow}$.
 - → Non-positivity of density matrix,
 - → Unstable (unbounded growth).
- Check stability: consider $f = (F_{aa}, F_{bb}, \Re[F_{ab}], \Im[F_{ab}])$

$$\partial_t \mathbf{f} = -\mathbf{M}\mathbf{f} + \mathbf{f}_0$$

- Eigenvalues of M exist in closed form:
 - ► Unstable (negative only if $dJ(\nu)/d\nu \gg 1$ — Markov breakdown)

32

- Non-Linblad form: negative eigenvalues of $L_{ij}^{\uparrow,\downarrow}$.
 - → Non-positivity of density matrix,
 - → Unstable (unbounded growth).
- Check stability: consider $f = (F_{aa}, F_{bb}, \Re[F_{ab}], \Im[F_{ab}])$

$$\partial_t \mathbf{f} = -\mathbf{M}\mathbf{f} + \mathbf{f}_0$$

- Eigenvalues of M exist in closed form:
 - ► Unstable (negative only if $dJ(\nu)/d\nu \gg 1$ — Markov breakdown)

32

Is BR the best (time-local) theory we can find?

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - ► Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

"For \hat{X} s.t. $[\hat{X}, \hat{H}_{system-bath}] = 0$, then $\partial_t \langle \hat{X} \rangle$ should match closed system."

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]: "For \hat{X} s.t. $[\hat{X}, \hat{H}_{system-bath}] = 0$, then $\partial_t \langle \hat{X} \rangle$ should match closed system."
 - ▶ Here, $\langle \hat{X} \rangle = \varphi_b^2 F_{aa} + \varphi_a^2 F_{bb} 2\varphi_a \varphi_b F'_{ab}$. Fails

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

"For
$$\hat{X}$$
 s.t. $[\hat{X},\hat{H}_{ extstyle ext{system-bath}}]=0$, then $\partial_t \langle \hat{X}
angle$ should match closed system."

- Here, $\langle \hat{X} \rangle = \varphi_b^2 F_{aa} + \varphi_a^2 F_{bb} 2\varphi_a \varphi_b F'_{ab}$. Fails
- Alternate approach:
 - BR assumes ρ̃(t) is "slow" in interaction picture

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

"For
$$\hat{X}$$
 s.t. $[\hat{X},\hat{H}_{ extstyle ext{system-bath}}]=0$, then $\partial_t \langle \hat{X}
angle$ should match closed system."

- Here, $\langle \hat{X} \rangle = \varphi_b^2 F_{aa} + \varphi_a^2 F_{bb} 2\varphi_a \varphi_b F'_{ab}$. Fails
- Alternate approach:
 - BR assumes ρ̃(t) is "slow" in interaction picture
 - Asymptotically ρ(t) is steady in Schrödinger picture

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

"For
$$\hat{X}$$
 s.t. $[\hat{X}, \hat{H}_{system-bath}] = 0$, then $\partial_t \langle \hat{X} \rangle$ should match closed system."

- Here, $\langle \hat{X} \rangle = \varphi_b^2 F_{aa} + \varphi_a^2 F_{bb} 2\varphi_a \varphi_b F'_{ab}$. Fails
- Alternate approach:
 - BR assumes ρ̃(t) is "slow" in interaction picture
 - Asymptotically ρ(t) is steady in Schrödinger picture
 - Assume instead ρ(t) is slow in Schrödinger picture

- Is BR the best (time-local) theory we can find?
- Hints it is not:
 - Eigenvalues of **M** vs exact sol'n near $\Delta = 0$.
 - Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

"For
$$\hat{X}$$
 s.t. $[\hat{X}, \hat{H}_{system-bath}] = 0$, then $\partial_t \langle \hat{X} \rangle$ should match closed system."

- Here, $\langle \hat{X} \rangle = \varphi_b^2 F_{aa} + \varphi_a^2 F_{bb} 2\varphi_a \varphi_b F'_{ab}$. Fails
- Alternate approach:
 - BR assumes ρ̃(t) is "slow" in interaction picture
 - Asymptotically ρ(t) is steady in Schrödinger picture
 - Assume instead ρ(t) is slow in Schrödinger picture
- "Schrödinger picture Bloch Redfield."
 - Correct Δ² expansion
 - Satisfies sum rule

ICSCE8

Edinburgh, 25th–29th April, 2016.

Plenary speakers: Atac İmamoğlu, Peter Zoller.

Invited speakers: Ehud Altman, Mete Atatüre, Natasha Berloff, Charles Bardyn, Jacqueline Bloch, Iacopo Carusotto, Cristiano Ciuti, Michele Devoret[†], Thomas Ebbesen, Thiery Giamarchi, Jan Klärs, Dmitry Krizhanovskii, Xiaogin (Elaine) Li, Peter Littlewood, Allan MacDonald, Francesca Marchetti, Keith Nelson, Pavlos Lagoudakis, Vivien Zapf. († To be confirmed)

> Early-bird registration & abstract deadline: 31st January 2016. Final registration deadline: 31st March 2016.

http://www.st-andrews.ac.uk/~icsce8

Summary

Transverse field Ising model

Joshi et al. PRA '13

Rabi Hubbard model

Schiró et al. arXiv:1503.04456

Collective effects in dephasing

Nissen et al. PRL '13; Eastham et al. arXiv:1508.04744

34

Questions

- Collective dynamics beyond local dissipation.
 - Many site analogues of Spin-Boson transitions?
 - Critical behaviour in open lattice models demonstrate non Hohenberg-Halperin classes of models.
- Bistability, limit cycles, beyond mean-field
- Organizing principles of driven-dissipative system attractors

37