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An objective method for measuring face detection
thresholds using the sweep steady-state visual evoked
response
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We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level
visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus
is presented at a specific temporal frequency while parametrically varying (“sweeping”) the detectability of the stimulus.
Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a
series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust
first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult
participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants
produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence
of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably
in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with
the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-
level vision provides a sensitive and objective method that could be used to measure and compare visual perception
thresholds for various object shapes and levels of categorization in different human populations, including infants and
individuals with developmental delay.
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In order to understand the mechanisms underlying
face detection, or the categorization of a visual stimulus
as a face, behavioral studies have investigated this

The healthy adult human brain can detect visual process using various tasks and stimuli: detection of

patterns such as a face in a complex visual scene in a
fraction of a second (e.g., Crouzet, Kirchner, &
Thorpe, 2010; Fei-Fei, Iyer, Koch, & Perona, 2007;
Fletcher-Watson et al., 2008; Lewis & Edmonds, 2003;
Rousselet, Mace, & Fabre-Thorpe, 2003). Sensitivity to
face patterns is even found at birth (Goren, Sarty, &
Wu., 1975; Johnson, Dziurawiec, Ellis, & Morton,
1991), suggesting that newborns have an innate
representation of a face template (although see Turati,
Simion, Milani, & Umilta, 2002).
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faces in complex visual scenes using manual responses
(e.g., Lewis & Edmonds, 2003; Rousselet et al., 2003) or
saccades (Cerf, Harel, Einhduser, & Koch, 2008;
Crouzet et al., 2010; Fletcher-Watson et al., 2008),
categorization of normal faces versus faces presented
under a variety of transformations such as inversion,
feature masking, or jumbling (Cooper & Wojan, 2000;
Lewis & Edmonds, 2003; Purcell & Stewart, 1986, 1988;
Valentine & Bruce, 1986), visual-search paradigms with
schematic faces or face photographs (Brown, Huey, &
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Findlay, 1997; Garrido, Duchaine, & Nakayama, 2008;
Hershler & Hochstein, 2005; Hershler, Golan, Bentin,
& Hochstein, 2010; Lewis & Edmonds, 2003; Noth-
durft, 1993; Van Rullen, 2006), detection of faces
briefly presented with backward masking (Purcell &
Stewart, 1986, 1988), or categorization of stimuli as
faces based on their global configuration rather than on
their local parts (e.g., two-tones Mooney figures or
Arcimboldo’s face-like paintings; McKeeff & Tong,
2007; Mooney, 1957; Moore & Cavanah, 1998; Parkin
& Williamson, 1987; Rossion, Dricot, Goebel, &
Busigny, 2011).

The perception of a visual stimulus as a face has been
associated with an increase in neural activation, relative
to other object shapes and scrambled faces, in a set of
high-level visual areas of the ventral processing stream,
most prominently in the inferior occipital gyrus and
middle fusiform gyrus, but also in the superior
temporal sulcus and inferior temporal cortex (e.g.,
Haxby, Hoffman, & Gobbini, 2000; Kanwisher,
McDermott, & Chun, 1997; Puce, Allison, Gore, &
McCarthy, 1995; Sergent et al., 1992; Tsao, Moeller, &
Freiwald, 2008; Weiner & Grill-Spector, 2010). Face
perception has also been associated with an increase
(relative to other visual stimuli) of the visual event-
related potential (ERP) recorded on the occipito-
temporal scalp at about 170 ms, the N170 (Bentin,
Allison, Puce, Perez, & McCarthy, 1996; for early
studies of face-sensitive ERPs, see Jeffreys [1989]; for
reviews on the N170, see Rossion & Jacques [2008,
2011]; and for the analogous component recorded in
MEG, M170, see e.g., Halgren, Raij, Marinkovic,
Jousmédki, & Hari [2000]). Intracranial studies in
epileptic patients have also reported large negative
components at approximately the same latency on the
ventral surface of the occipito-temporal cortex associ-
ated with the perception of a face (e.g., Allison,
McCarthy, Nobre, Puce, & Belger, 1994; Barbeau et
al., 2008).

Although these approaches have provided informa-
tion regarding the stimulus characteristics, time-course,
and neural basis underlying face processing in the
healthy adult brain, they also have limitations that
leave open the question of how a face is first detected.
Behavioral detection thresholds reflect a complex chain
of sensory and decision processes, and performance can
be impacted by a number of extraneous factors,
particularly in infants and children and in populations
with cognitive impairments.

Traditional ERP measures based on the N170 face-
sensitive response component typically involve the
comparison between suitable face and control images
(e.g., Rossion & Caharel, 2011; Rousselet, Husk,
Bennett, & Sekuler, 2008a). However, subtraction of
waveforms to isolate a face-specific response can be
difficult to interpret due to differences in time (latency)
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and space (topography) of the N170 elicited by a face
versus a control image, as well as differences that are
present in preceding ERP response components. The
structure of face-selective components defined in this
way can vary considerably across different populations
and precise definition of the onset time, peak time, and
amplitude can sometimes be challenging (see Kuefner,
de Heering, Jacques, Palmero-Soler, & Rossion, 2010).
Moreover, the low signal-to-noise ratio of the transient
ERP method requires the recording and averaging of a
substantial number of trials in order to obtain reliable
transient ERP responses that differ between faces and
control stimuli in a group of participants, let alone in a
single observer. This limitation is particularly problem-
atic when recording face perception responses from
infants, children, or clinical populations (Kuefner et al.,
2010).

What would be desirable is an objective method that
not only tightly controls for the contribution of responses
to extraneous low-level visual cues, but also provides
adequate signal-to-noise ratio for defining face-sensitive
response components in a small number of trials. Here,
we used the steady-state visual evoked potential (ssVEP)
method (Regan, 1966), in particular the sweep ssVEP
(Regan, 1973), which has previously been used to isolate
specific responses to simple visual stimuli. This method
has provided a rapid and objective assessment of low-
level visual function such as visual acuity and contrast
sensitivity in infants and adults (e.g., Norcia & Tyler,
1985; Norcia, Tyler, & Hamer, 1990; Regan, 1977; Tyler,
Apkarian, Levi, & Nakayama, 1979; for a recent review
see Almogbel, Leat, & Irving [2008]). To adapt the sweep
ssVEP approach to the study of high-level vision, and
face perception in particular, we used a phase-scrambling
parameter to systematically vary face visibility. A
comparison between responses evoked by phase-scram-
bled and intact images has been used in several recent
ERP studies to isolate face-sensitive responses (e.g.,
Jacques & Rossion, 2004; Philiastides & Sajda, 2007;
Rossion & Caharel, 2011; Rousselet, Husk, Bennett, &
Sekuler, 2007; Rousselet et al., 2008a; Rousselet, Pernet,
Bennett, & Sekuler, 2008b). In the present study,
thresholds for the detectability of face-structure were
measured using the sweep ssVEP method, in which the
visibility of the face-structure was systematically in-
creased (i.e., descrambled) while a face-specific response
component was extracted using EEG spectrum analysis.

Materials and methods

Participants

Data are reported from 10 participants (six men; age
range: 18-34 years; mean age: 25.8 years, SD: 6.1
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Figure 1. The full set (15) of 100% phase-coherent faces used in the study (with numbers corresponding to the data shown in the Results
section). At the end of the 20-s stimulation sequence, a 100% phase-coherent face as displayed here alternated with a fully phase-

scrambled version of the same stimulus.

years), each of whom had normal or corrected vision.
Written informed consent in accordance with proce-
dures approved by the Institutional Review Board of
Stanford University was obtained from all participants
prior to the start of the experiment.

Stimuli generation

Fifteen photographic face images were cropped to
remove external features such as hair. The original
stimuli varied in size (three levels), viewpoint (seven
full-front, four left profile, four right profile) and
spatial location on a uniform rectangular white
background.

Previous studies have attempted to isolate evoked
responses to faces from responses to low-level visual
information such as luminance, contrast, and shape of
the amplitude spectrum by comparing an entirely
phase-scrambled face to an intact face (e.g., Ndasdnen,
1999; Rossion & Caharel, 2011; Rousselet et al., 2008a,
2008b; Sadr & Sinha, 2004; Tanskanen et al., 2005).
Our approach was different in that the image back-
ground remained fully scrambled throughout the entire
sweep sequence. Also, face visibility was varied across
steps (i.e., descrambled), which has been done previ-
ously in a few studies (e.g., Sadr & Sinha, 2004;
Rousselet et al., 2008a, 2008b). As explained below, we
varied face visibility by creating a graded sequence of

images with uniform degrees of scrambling and that
maintained the same distribution of low-level image
statistics, specifically equal power spectra and mean
luminance. The 15 face images in their fully unscram-
bled state are shown in Figure 1.

There were two distinct processes involved in the
creation of the stimuli. The first was the creation of a
set of face exemplars on noise backgrounds with
identical power spectra from a set of unscrambled
isolated face images, illustrated diagrammatically in
Figure 2. The second process involved the systematic
degradation of these individual exemplars via phase
scrambling.

To create the stimuli we first calculated the average
power spectrum over the set of 15 isolated face
exemplars. This power spectrum was then combined
with the phase spectrum of each exemplar to create
intermediate images with identical power spectra.
Careful inspection of the face regions of Figure 1 will
reveal that the face regions contain noise. The face
regions of these images are still 100% phase coherent
with the face exemplars. The noise in the face regions is
a result of balancing the power spectrum across the set
of exemplars. The amount of noise added to the face
regions as a result of changing the amplitude spectrum
is shown in Figure 2a and 2c. If one replaces the white
background of the top face in Figure 2a with a midgray
background, then Figure 2¢ has a phase spectrum that
is identical to that of the top image in Figure 2a. Thus,
the 100% coherent face stimulus is fully phase coherent
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Figure 2. Flow-chart of stimulus generation. (a) Isolated, cropped faces of different sizes, poses, and spatial locations were derived from
photographs. (b) The average power spectrum of the isolated faces was computed. (c) The power spectrum of each individual face
exemplar was replaced with the power spectrum of the average, retaining the original phase spectrum of the exemplar. (d) A set of phase-
randomized images was generated from the power spectrum of the average. (e) A smoothed blending mask was created for the face
image (white indicates face visible, black not visible). (f) A complementary blending mask was generated for the background noise. (g)
The face and background image were combined to create a face embedded in an equal power spectrum noise background.

in the face region, but is not 100% amplitude coherent.
We wanted to embed each face in a random noise
background of the same power spectrum as the faces in
order to limit the introduction of a local contrast cue
that would occur if isolated faces were scrambled. We
thus created a set of background images from the
average power spectrum image so that each had a
uniform random phase distribution. The next step was
to blend the isolated faces with the background images.
The original isolated faces had an outline that created a
visible discontinuity. To eliminate this discontinuity
between the face region and the background region of
the final images, we created complementary spatial
blending masks that smoothly transitioned between
regions. The blending masks were made such that they
started within the face and ended by the face outline.
Complementary masks for faces and the backgrounds
were used to avoid an increase in contrast in the
transition region. The complementary face and back-
ground images were then added to create the final
equalized power spectrum faces.

The next step in creation of the stimuli was to
generate a series of images that had progressively
greater amounts of scrambling of the phase structure of

the face image. Interpolating between the unscrambled
face and an image with uniform random phase, as done
in previous studies (e.g., Rainer, Augath, Trinath, &
Logothetis, 2001; Reinders, den Boer, & Biichel, 2005;
Reinders et al., 2006), presents a problem. Phase is a
circularly distributed quantity (Figure 3); therefore,
progressive scrambling using simple linear interpola-
tion introduces an artifact in the phase distribution
(Dakin, 2002). Dakin (2002) introduced the weighted
mean phase (WMP) procedure to solve the problem.
WMP works by decomposing phase into individual sine
and cosine components, interpolating these compo-
nents, and transforming back to phase with the four-
quadrant inverse tangent. While WMP avoids an over-
representation of certain phases, it does not provide
uniformly sized phase angle steps. Unequal phase angle
steps is a limitation of previous EEG studies that have
used this method to parametrically (de)scramble the
phase of the stimulus (e.g., Rousselet et al., 2008b).
Another solution to the overrepresentation of phase
was proposed by Sadr and Sinha (2004). In this
solution, half of the Fourier coefficients in the power
spectrum were assigned minimal-phase interpolation
and the other half were assigned maximal-phase
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Figure 3. Graphical representation of phase circularity and phase scrambling algorithm used. (a) Start and finish phase values with three
interpolation steps; red depicts steps created by weighted mean phase (WMP), green depicts steps created by maximum-phase method,
and blue depicts steps created by minimum phase method (as used in the current study). (b) Comparison between step sizes created
using WMP and the minimum-phase method (used here) of phase interpolation.

interpolation. This approach is nondeterministic and
creates large transients in contrast for closely matched
images, which is particularly problematic for EEG
studies because these transients can generate spurious
responses. The approach we took here was to linearly
interpolate phase angle, but to choose the direction of
interpolation that corresponded to the minimum
distance between phases, irrespective of modulus
boundaries. Using the minimum distance between
phases preserves the uniformity of the phase distribu-
tion around the unit circle and provides equal sized
steps.

The 20 steps that were swept for one face exemplar
(one trial) are shown in Figure 4. For each face we
interpolated between a starting image that had 100%
randomized phases and the final unscrambled face
exemplar. There were 20 equal steps in the interpola-
tion. In order to destroy temporal correlations in
luminance between successive scrambled images, the
starting, fully random, image for the interpolation for
each step in the sweep was chosen independently. The
effects of the independent noise images can be seen by
noting that on each step the noise background has been
updated, and thus the noise masking of the face is
different both because a new noise has been used and
because the phase-coherence is different.

A total of 15 graded face image sequences were
created for this study. These sequences contained faces
that were highly variable in their visual appearance,
size, and spatial location. The least scrambled image of
each face exemplar is shown in Figure 1. Each sweep
sequence included 20 steps, ranging from 0% to 100%
interpolation of the original and random phase

spectra, with 5.26% change in coherence per step. A
coherence level of 0 corresponded to a fully random-
ized phase spectrum of the original image and a
coherence level of 100% corresponded to an unaltered
phase spectrum.

Experimental design and procedure

The experiment consisted of the presentation of 45
20-s trials in which a face gradually emerged from a 0%
coherence image on 1/3 of the trials. Each face-
containing image was alternated with a 0% coherence
image (face onset/offset presentation) at a rate of 3 Hz
(Figure 5). An example trial for one face exemplar (face
9) is shown in Movie 1.

The 20 different steps of scrambling were presented
for 1 s each using a newly computed random image for
each step of the sweep. The sweep sequence was
immediately preceded by a 1-s presentation of the first
step of the sequence to allow the initial transient
contrast appearance VEP to dissipate and the transi-
tion to the steady-state to begin. We used twice as many
trials in which no face appeared in order to minimize
participants’ perceptual expectancies and guessing.
Participants were instructed to press one response key
(spacebar) as soon as they detected a face during the
presentation of the sweep. They were asked to refrain
from pressing a response key when no face was
presented. Participants were also requested to maintain
a constant level of confidence in their judgment across
trials. They were informed that target faces were
present in only a subset of the trials and that the faces
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Figure 4. The 20 images of face 1 in decreasing order of scrambling. During the experiment, the firstimage of the sequence alternated with a
fully scrambled stimulus for 1 s (three cycles) before the nextimage alternated with another fully phase-scrambled stimulus for 1 s, and so on.

could vary in size, appearance, and their spatial
location within the image. Note that after the
participant indicated their detection of a face, the
presentation of the sweep continued until the last step.

Stimuli were presented as gray-scale images on a
contrast linearized CRT at a resolution of 800 x 600, a
72-Hz vertical refresh rate, and a mean luminance of
50.31 cd/m?. The images were always presented in the
center of the screen and subtended a visual angle of
approximately 15°.

ssVEP recording

The EEG data were collected using a 128-channel
HydroCell Geodesic Sensor Net (Electrical Geodesics
Inc., Eugene, OR), bandpass filtered from 0.1 to 200 Hz,
and digitized at a rate of at 432 Hz (Net Amps 300 TM,
Electrical Geodesics, Inc.). Individual electrodes were
adjusted until impedances were below 60 kQ before
starting the recording. Data were evaluated off-line with
custom-made software (PowerDiva). Artifact rejection
was done according to a sample-by-sample thresholding
procedure to remove noisy electrodes and replace them
with the average of the six nearest neighboring
electrodes. The EEG was then re-referenced to the

common average of all the remaining electrodes. Epochs
with more than 20% of the data samples exceeding 30
1V were excluded on a sensor-by-sensor basis. Typically,
these epochs included eye movements or blinks.

sSVEP threshold estimation

Individual VEP thresholds were estimated from an
integrated first harmonic (1F; 3 Hz) response function.
Voltages recorded from each step of the sweep were
added together to form a cumulative response function
that was guaranteed to be monotonically increasing. To
estimate the EEG background noise, the same integra-
tion was performed at 2.5 and 3.5 Hz where there was
no stimulus-related activity. We compared the cumu-
lative sum of the signal to that of the noise, both
normalized by the sum of the signal amplitude. This
procedure reflects the percentage of the measured
response that is signal. We then used an arbitrary
threshold of 10% signal to determine the coherence
level at which the integrated 1F response function
diverged from the noise function. This coherence level
was taken as the threshold of face detection.
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Figure 5. Schematic illustration of the face coherence sweep
ssVEP paradigm. In this method, a phase-scrambled face
alternates with a stimulus that evolves from a phase-scrambled
face into a fully coherent face at 3 Hz over 20 s of stimulation. At
the beginning of the sweep, the face-containing image has an
almost entirely phase-randomized spectrum. Over the ftrial, the
degree of phase-scrambling is decreased in a series of equal
steps, three of which are illustrated. The black bars and black
square icons indicate the fully randomized images. Gray bars and
gray square icons indicate partially randomized images, with
lighter colors representing lower levels of scrambling.

First and second harmonics

Activity at the first harmonic (1F; 3 Hz) was only
found for trials in which a face image was presented.
Figure 6 (top panel) shows the topography of the
group-averaged 1F response measured across all values
of coherence (0%—100%). The response was distributed
bilaterally with a maximum over the right hemisphere
around channel 96 (P10). Activity at the first harmonic
for the control trials that did not contain a face (Figure
6, top right) was not different from the experimental
noise level. By contrast, the group averaged second
harmonic (2F; 6 Hz) response was maximal over the
occipital midline around channel 75 (OZ) and was
comparable in magnitude between face and no-face
trials (Figure 6, bottom left and right).

On the trials in which no face appeared in the sweep
sequence, there were only 1.4% of the channels across
all coherence steps that contained a signal significantly
above noise level (p < 0.00002). Response phase was
largely constant during the sweep (data not shown) so
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collapsing across steps did not result in cancellation of
responses that could have occurred if there were large
phase differences over the different coherence values of
the sweep. The large majority (92%) of these significant
channels were located posteriorly, showing an effect
only at the beginning of the stimulation (step 1 of the
sequence). This activity may reflect a small residual of
the transient VEP that is generated at the onset of the
visual stimulation. At the end of the sweep there was no
significant signal above noise on any of the channels.

Figure 7 shows the distribution of response compo-
nents over the 0.5 to 15 Hz range is shown for face and
no-face trials at three representative electrodes (two
lateral and one mid-line electrode). The first and second
harmonic components were found to be the largest,
followed by the fourth harmonic (12 Hz). Odd
harmonic responses (3 and 9 Hz) were present only
for the face trials, especially over the right hemisphere
where the first harmonic response was larger than the
second harmonic response (Figure 7, top right panel).
Even harmonic responses (6 and 12 Hz), but not odd
harmonic responses, were present for the no-face trials
(Figure 7, bottom right panel)

Figure 8 (left panel) plots the ratio of the first
harmonic response relative to the sum of the first and
second harmonic responses. This index ratio reflects the
degree to which the total response is dominated by odd
(face-specific) or even (not face-specific) activity. The
index was plotted collapsed across all steps of the
sweep. The selectivity index shows focal peaks bilater-
ally with maxima lying anteriorly to the maxima of the
first harmonic itself. The values of the index are shown
for channel 65, 75, and 96 in the right panel of Figure 8.

Sweep response functions

The 1F amplitude versus phase-coherence sweep
response function averaged across all participants and
all face exemplars is shown in Figure 9. We found that
ssVEP amplitude at the first harmonic rose above the
noise level abruptly rather than linearly, starting at
about 30% phase-coherence (step 7). The response
reached a plateau by about 40% coherence (step 15).

In contrast, for no-face trials, the first harmonic
sweep response was not above the experimental noise
level even at the end of the sequence, and did not rise
above the noise level throughout the entire sweep. The
first harmonic was thus specifically evoked by image
sequences that alternated between face-containing and
phase-randomized images.

The second harmonic sweep response function for
face trials was nearly constant across all 20 steps of
image coherence (Figure 10). This response is driven by
the contrast changes that occur after each update of the
image. These updates occur at 6 Hz. Comparable data
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Movie 1. Example trial of the face coherence sweep ssVEP paradigm.

is shown for the no-face trials and the amplitudes were
also constant across steps and of similar magnitude to
those measured in the face trials (Figure 10).

Comparison of ssVEP and psychophysical
face detection thresholds

The distribution of face detection behavioral re-
sponse times is shown on the same axis as the group
averaged 1F sweep response in Figure 9. The mean
behavioral response for face detection occurred at
around 45% coherence with the modal detection
threshold that was slightly lower. Behavioral detection
began at coherence levels where the evoked response
first began to rise above the noise. The evoked response
reached a plateau at face coherence values near the
modal decision time.

The behavioral face detection thresholds varied
substantially across face exemplars (range: 33%—73%
coherence), likely a consequence of the variability in
size, viewpoint, and spatial location of face presenta-
tion (Figure 11). Individual participants also showed a

range of detection thresholds (range: 41%—52% coher-
ence) when pooled over face exemplars.

The inter-face and inter-participant variance was
used to compare ssVEP with psychophysical face
detection thresholds to test whether the electrophysio-
logical and behavioral thresholds covaried. This
analysis allowed us to determine whether the ssVEP
thresholds tracked the variations in perceptual face
detection. Figure 12 illustrates our procedure for
determining ssVEP face detection thresholds. A stan-
dard method for determining the threshold for a swept
parameter ssVEP measurement is to fit a line to the
linear part of the response function and define
threshold as the zero voltage intercept of this fit. This
procedure works well when the response function is
relatively linear with respect to the changing stimulus
parameter. For the current stimulus, however, the
response was closer to a step function. Because it was a
step function, there were very few response steps that
could be used for a regression-to-zero threshold
estimation. Another method for determining the
response threshold is to find the first step at which
the response differs significantly from the noise.
However, because this type of threshold measurement
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Figure 6. Scalp topography for first (top) and second (bottom) harmonic responses averaged across all sweep steps of face trials (left) and
no-face trials (right). The first harmonic response was observed only for the face trials, and showed a broad distribution over the posterior
scalp, maximal over right occipito-temporal electrodes. The nonspecific second harmonic response was distributed focally over the medial

occipital electrodes, for both trial types.

relies on the lowest signal-to-noise ratio signals, it can
be a highly variable estimation.

For the present threshold estimations, we thus
adapted a method used to quantify ERP Ilatencies.
This method first determines the fractional area of a
component, and defines the latency of the component
as the time at which a certain fraction of the response
has occurred (Luck, 2005). Adapting this method for
use with sweep ssVEP data requires recognizing that
amplitude is always positive (even for noise only
measurements) and therefore one must also take into
account the amount of noise that is contributing to the
area measure. Figure 12a shows the response for a
single face from a single trial averaged over the 10
participants. Figure 12b shows the results of taking the
cumulative sum of the data in Figure 12a. We
compared the cumulative sum of the signal to that of
the noise, both normalized by the sum of the signal
amplitude (therefore the final 1F value is 100% by

definition). Figure 12c shows the difference between the
signal at 1F and the noise estimated from two adjacent
EEG frequencies. This curve is indicative of the
percentage of signal present at each coherence value.
We then arbitrarily defined the ssVEP threshold as the
coherence level at which 10% of the cumulative sum
was signal. Figure 12d shows the same analysis as 12c,
but for all face exemplars.

Figure 13 shows the correlation between ssVEP
thresholds derived as described above and psychophys-
ical thresholds for each face exemplar. The ssVEP and
psychophysical face detection thresholds were signifi-
cantly correlated (R*> = 0.93; p < le-8). Figure 14
presents the same comparison across participants and
here the correlation was also significant (R* = 0.86, p <
0.001). The slopes of the regression lines were both
close to 1, indicating a 1:1 relationship between ssVEP
and perceptual sensitivity.
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Figure 7. EEG spectra (0.5-15 Hz; frequency resolution of 0.5 Hz) at three occipital channels, averaged across all sweep steps of face
trials (top) and no-face trials (bottom). For the face trials (top), the spectra show the distinct first harmonic response (3 Hz), which was
particularly prominent on lateral occipital sites (PO7 on the left, P10 on the right). Over the right occipito-temporal site, the 1F response
was the largest (note also the presence of the 3F response at 9 Hz). For the no-face trials (bottom), there was no distinct response at the

first harmonic (3 Hz).

We have developed a novel method based on the
sweep ssVEP for obtaining an objective, sensitive, and
behavior-free measure of face detection. Our stimuli
were segmented faces of differing sizes, viewpoints, and
spatial locations, which resulted in a group-level ssVEP
face detection threshold at 30%-35% phase-coherence
of the face image. Thresholds were reliably estimated
from individual participants over 15 face trials, and for
each of the 15 face trials when averaged over the 10
participants.

Behavioral measures of perceptual face detection
reflect a complex chain of concurrent sensory and
motor decision processes, and task performance can be
impacted by a number of extraneous factors, such as
response criterion, attention, motivation, and response
selection. By contrast, our electrophysiological ap-
proach provides a sensitive neural measurement that
isolates responses specific to the image structure of
faces, but does not rely on a behavioral response. This
is particularly important if one aims to obtain face
detection thresholds from infants and children, indi-
viduals with cognitive impairments, or nonhuman
populations.
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Figure 8. Two-dimensional scalp map showing the index of the first harmonic response relative to the sum of the two harmonic responses,
for both trial types. Channel 96 (PO10) showed the most specific increase of the first harmonic response associated with face coherence.

Comparison to previous ERP studies of face
detection

Previous studies of face processing have utilized
transient ERPs, which provide important information
about the time-course of face perception. When low-
level visual cues were carefully controlled, for instance
by means of phase-scrambling procedures similar to
those used here, ERP results have shown that faces are
detected at around 120-130 ms following face onset,
with peak discrimination occurring at 160—170 ms on
average (N170 face-sensitive component) (Jacques &
Rossion, 2004; Rossion & Caharel, 2011; Rossion &
Jacques, 2008; Rousselet et al., 2007, 2008a, 2008b).
Transient ERPs, however, have several limitations that

1st harmonic (3Hz)

are improved by the steady-state technique we present
here.

A first limitation of transient ERP studies concerns
the ambiguity in component selection. A flashed face
stimulus elicits a sequence of evoked response compo-
nents on the scalp that can be defined as visual
potentials: C1(N170), P1, N1/N170, P2, N250, etc.
These components vary in terms of their polarity, peak
latency and amplitude, and topography. While these
components provide a rich source of information about
the time-course of a given process, for instance face
detection, it is difficult to objectively associate a specific
process to one of these components or to a defined
time-window falling in between these components. This
difficulty is largely based on the subjective criteria used
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Figure 9. Amplitude of the first harmonic (3 Hz) as a function of coherence, as recorded on channel 96 (P10). Error bars represent 1
standard error of the mean across participants. The gray region shows the probability distribution of behavioral responses.
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Figure 10. Amplitude of the second harmonic (6 Hz) as a function of coherence, as recorded on channel 96 (P10). Error bars represent 1

standard error of the mean across participants.

to identify these components. Moreover, components
elicited by face stimulation can be particularly difficult
to identify when they are measured in infants, children,
or neurologically affected patients because there can be
significant variability in the number, timing, and
morphology of the components with development and
clinical condition (Kuefner et al., 2010; Prieto et al.,
2011).

Importantly, the limitation described above also
applies to transient ERP studies that rely on time-point
analyses rather than on defined ERP components (e.g.,
Rousselet et al., 2008b). Baseline or latency differences
between two stimulus conditions can lead to spurious
“face-specific” responses occurring at multiple time-
points, and there is an inherent inefficiency in
independently estimating the low-level feature re-
sponse. In contrast, the sweep ssVEP approach allows
for an unambiguous (i.e., objective) quantitative
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analysis of the face-specific response: the first harmonic
response (3 Hz here) is defined by the paradigm and
selected by the experimenter and is demonstrably face
specific (see Figure 1). This component can be
measured from a single stimulus condition, rather than
requiring a subtraction of separately measured test and
control responses. By sweeping the level of phase-
coherence of the face, a threshold can be objectively
determined, thereby providing a direct measure of face
detection.

Specificity of the first harmonic
In the ssVEP paradigm used here, the specificity of

the first harmonic for face structure derives from image
symmetry considerations and from careful stimulus
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Figure 11. Average behavioral face detection response time for each face (10 s = half of the sequence, or 50% coherence). Dots

represent individual participants’ response time for each face.
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Figure 12. Method used to derive ssVEP threshold. (a) Amplitude of the first harmonic (3 Hz) as a function of coherence, as recorded on
channel 96 (P10). These data are from a single presentation of face 4 averaged over 10 participants. Gray curve plots the noise level
measured at nearby frequencies in the EEG. (b) Cumulative integral of the data from (a); both signal and noise are normalized by the sum
of the signal amplitude. (c) Difference between signal and noise from (b) with ssVEP threshold criterion of 10% normalized signal shown
as a dashed line. (d) Normalized cumulative amplitude difference for all 15 faces used in the study.

control. We alternated between two images that had
equal power spectra and mean luminances. So, if the
brain detects differences in the power spectrum or
luminance of the two images, then transition responses
from one image to the other should be identical because
the underlying distribution of neural population
activity should be the same at the level of resolution
of the scalp-recorded VEP. If, on the other hand, there
are populations of neurons that are sensitive to
statistical regularities that are present in the face image
and that are not captured by the power spectrum, then
the populations that code face-containing images and
the scrambled ones will not be the same. This
nonequivalence of underlying neuronal responses
opens the way to measuring nonequivalent evoked

responses to transitions between a face-containing and
a scrambled image. These nonequivalent transition
responses project onto the odd harmonics of the
evoked response.

The crux of the ssVEP method is control over other
factors that might lead to differential population
responses from transitions between the different
images, such as differences in mean luminance, or
average contrast that could also lead to asymmetric,
odd harmonic responses. Our stimulus set is sufficiently
well controlled that we did not evoke an odd harmonic
response at the beginning of the stimulation sequence,
or at any step during the no-face sweep trials. Our
phase scrambling method was carefully designed to
create steps with equivalent changes in the stimulus.
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Figure 13. Correlation between ssVEP (channel 91) and
psychophysical face detection thresholds for each face exemplar.
Each data point represents the average of 10 participants. The
best fitting two-parameter (slope and offset) line to the data is
shown.

Thus, the odd harmonic we measured from 30%-35%
phase coherence in the face-containing trials is specific
to some level of structure in the face images that is
higher order than the power spectrum. For this reason,
the success of our approach depends to a greater extent
than other approaches on a tight control of low-level
visual features of the stimuli. As a result, the sweep
ssVEP technique provides the advantage that lack of an
adequate no-face control stimulus will be immediately
visible from the shape of the response (i.e., the presence
of a first harmonic response for “symmetrical” stimuli).

Signal-to-noise ratio advantage for ssVEP

Our sweep ssVEP approach to measure face
detection overcomes yet a second limitation of transient
ERP measures: their low signal-to-noise ratio (SNR),
which requires the recording of a large number of
independent trials. Here, because the visual system can
be driven precisely by the periodic stimulation, all of
the response, and thus all of the effect, is concentrated
into a frequency band that occupies a very small
fraction of the total EEG bandwidth. In contrast,
biological noise is distributed throughout the EEG
spectrum, so that the SNR in the bandwidth of interest
can be very high (Regan, 1989). Moreover, the
differential activity is present at an exactly known
temporal frequency in the EEG, making it possible to

40 45 50 55
Coherence Level at Behavioral Response

Figure 14. Correlation between ssVEP (channel 91) and
psychophysical face detection thresholds for each participant.
Each data point represents the average of 15 face exemplars.
The best fitting two-parameter (slope and offset) line to the data is
shown.

use a highly selective filter (spectrum analysis) to
separate signal from noise.

Objective threshold estimation

A third advantage of the present sweep ssVEP
approach to measure face detection is that it provides a
threshold estimation by identifying the first image that
leads to a first harmonic response, or by regression to
zero amplitude, as has been done in the past for sweeps
with low-level visual stimuli (Tyler et al., 1979). In
contrast, despite the use of highly homogenous stimuli
only (full-front faces with no variation in spatial
location, viewpoint, and size), previous ERP studies
that used parametric manipulations of face stimuli
embedded in noise (Jemel et al., 2003; Rousselet et al.,
2008b) were not designed to use the parametric
variation as a means to estimate perceptual thresholds
of face detection.

Future optimization of the approach

As observed in the grand-averaged first harmonic
sweep response data, and for most participants, 30%—
35% of phase coherence was sufficient to elicit a
significant first harmonic response associated with face
detection. Obviously, this amount of phase-coherence
does not represent an absolute limit for the face
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detection threshold but is only valid for the variable set
of images used here. If we had used a more
homogenous set of face stimuli, for instance a set of
full-front faces presented centrally and of the same size,
the face detection threshold might have been identified
at a lower level of phase-coherence in the sweep
sequence. However, under such highly predictable
conditions, participants may have learned to anticipate
the presence of a face from limited cues emerging
constantly at the same location (e.g., one eye, the
overall outline of the face). Here, variability was of
interest as a means of creating unpredictability over
which we could compare covariation of the electro-
physiological and psychophysical thresholds observed
for different face stimuli.

Despite this threshold variability, only a few (15)
face trials were needed to estimate face detection
thresholds reliably. This observation suggests that with
a homogenous set of faces, the sweep ssVEP approach
might be able to determine face detection thresholds
from a smaller number of trials. Finally, sampling
multiple frequency rates with the present paradigm
could also be valuable in a future study, as it would
provide an estimate of response latency from the phase
values of the Fourier transform (Regan, 1989), while
maintaining all of the advantages of the approach.

Face-specificity and generalization

Several factors motivated our decision to use faces as
the image category for extension of the sweep ssVEP
approach to high-level vision. Faces form a highly
visually homogenous set of familiar stimuli, which are
associated with large and well-defined neural responses.
Faces are detected faster and more automatically than
other stimuli (Crouzet et al., 2010; Fletcher-Watson et
al., 2008; Hershler & Hochstein, 2005, Herschler et al.,
2010; Kiani, Esteky, & Tanaka, 2005; although see Van
Rullen, 2006), and computer scientists have devoted
considerable efforts to building systems that automat-
ically detect faces in images (e.g., Kemelmacher-
Shlizerman, Basri, & Nadler, 2008; Viola & Jones,
2004; Yang, Kriegman, & Ahuja, 2002). However, the
method developed here is not restricted to faces and
could potentially be used to determine the thresholds
for categorization of other classes of natural images.
The sweep ssVEP could also be extended to the
detection of faces or objects in nonsegmented images;
that is, in complex visual scenes scrambled with a
similar approach (e.g., Jiang et al., 2011).

Here, we cannot, and do not, claim that the 3-Hz
first harmonic response obtained is specific to faces per
se; rather, it reflects the detection of structure in the
intact face stimuli that could be a specific feature of
faces (e.g., eyes) or a feature that could have potentially
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been obtained with other natural or with synthetic
image classes. However, the observation of the largest
and earliest first harmonic response over the right
occipito-temporal cortex, at the same electrode sites
where both the face-sensitive N170 component (Bentin
et al., 1996; Rossion & Jacques, 2011) and the face-
related ssVEP response (Rossion & Boremanse, 2011)
have been found, is suggestive of responses from face-
selective populations of neurons. Lastly, our data do
not allow us to determine whether the face detection
thresholds we have derived are determined solely by the
physical attributes of the stimulus, or whether they
depend on the task we have asked the observers to
perform. These questions could be addressed in future
studies using this method with appropriately designed
stimuli and behavioral tasks.
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