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Primate neocortex contains over 30 visual areas. Recent techniques such as functional magnetic resonance
imaging (fMRI) have successfully identified many of these areas in the human brain, but have been of limited
value for revealing the temporal dynamics between visual areas. The electroencephalogram (EEG) provides
information with high temporal precision, but has had limited success separating out the signals from
individual neighboring cortical areas. Consequently, controversies exist over the temporal dynamics across
cortical areas. In order to address this problem we developed a new method to identify the sources of the
EEG. An individual's unique cortical pattern of sulci and gyri along with a visual area's functional retinotopic
layout provides a folding fingerprint that predicts specific scalp topographies for stimuli presented in
different parts of the visual field. Using this folding fingerprint with a 96 or 192 location stimulus severely
constrains the solution space making it relatively easy to extract the temporal response of multiple visual
areas to multiple stimulus locations. The large number of stimuli also provides a means to validate the
waveforms by comparing across stimulus sets, an important feature not present in most EEG source
identification procedures. Using this method our data reveal that both V1 and V2 waveforms have similar
onset latencies, and their temporal dynamics provide new information regarding the response latencies of
these areas in humans. Our method enables the previously unattainable separation of EEG responses from
neighboring brain areas. While we applied the method to the first two cortical visual areas, V1 and V2, this
method is also applicable to somatosensory areas that have defined mappings. This method provides a
means to study the rapid information flow in the human brain to reveal top-down and bottom-up cognitive
processes.

© 2009 Elsevier Inc. All rights reserved.

Introduction

fMRI has provided exquisite spatial maps of visual cortex (Baseler
et al., 1999; DeYoe et al., 1994; Engel et al., 1997). Early visual areas V1
and V2 follow a retinotopic layout such that adjacent positions in the
observer's visual field activate adjacent regions of cortex. The fMRI
signal has a time course on the order of seconds, hence the method's
poor temporal resolution. Electroencephalography (EEG), on the
other hand, measures the electrical activity generated by the brain
with a temporal resolution on the order of 10−3 s. This is three orders
of magnitude faster than fMRI and is a direct measure of neural
activity. The problem has been to identify the individual responses of
the multiple sources that account for the summed activity recorded
from the scalp.

The two most widely used classes of methods are multiple dipole
modeling and distributed source imaging. Unfortunately, for both
methods, closely spaced sources, such as between cortical areas V1
and V2, are impossible to differentiate. Multiple dipole modeling
involves a nonlinear search on the parameters of a few point sources
(Scherg, 1992). The process runs into problems when sources are

close because a single rotating source can do an adequate job of fitting
the data generated by multiple closely spaced sources (Zhang et al.,
1994). The source imaging method (often called minimum norm
methods) on the other hand, fixes many sources onto the cortical
surface given by an MRI and estimates the activation of those sources
(Dale et al., 2000; Hämäläinen and Ilmoniemi, 1994; Phillips et al.,
2002). Source imaging has the drawback of producing sources that are
excessively spread out. While methods have been proposed to focus
the source solutions by applying further constraints from, for
example, fMRI data these methods still have problems with source
crosstalk (Dale et al., 1999).

Relatively few studies have used fMRI to quantify localization error
of EEG/MEG. A pair of studies compared fMRI localization to dipole
source localization using EEG (Baker et al., 2006; Sharon et al., 2007)
using bothMEG and EEG. In both cases the focus was on the dominant
dipole, assumed to be localized in V1. Both studies came to a very
similar conclusion that the deviation of the best fitting EEG dipole
source locations from the expected fMRI locations had a mean error
ranging from 13–16 mm for four hemispheres (Baker et al) to 12–
15mm for 3 hemispheres with a fourth hemisphere having an error of
53 mm (Sharon et al., 2007). When Sharon et al. supplemented the
EEG signal with MEG localization the range reduced to a 5- to 8 -mm
error compared to fMRI for a single V1 source.
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Several studies have shown that adequate source separation
depends on several factors such as: signal to noise ratio, proper for-
ward model, and source orientation (Baillet et al., 2001; Ferree et al.,
2001; Lütkenhöner, 1998). Under typical conditions a minimum
separation of 4 cm is needed to resolve sources. When sources are not
resolvable they can mix together, a phenomena called the cross-talk
(Dale et al., 1999), or the rotation problem (Dandekar et al., 2007;
Klein and Carney, 1995). This problem refers to the fact that when
sources are not sufficiently separated it is impossible to determine if
the reconstructed source time functions are pure or mixtures of the
true time functions.

To resolve close sources additional information needs to be
incorporated into the method (Hagler et al, 2008). The solution
described in this paper uses an individual's unique cortical shape
within visual areas V1 and V2, the folding fingerprint, to solve the
problem of identifying the source time functions. Moreover, the
method provides a means of validating the identified temporal res-
ponses by comparing results across stimulus locations. The method
utilizes the subjects' known retinotopy, given by fMRI, to help cons-
train the sources' spatial location and orientation. The crucial aspect of
this method for obtaining separation between visual areas is the
assumption that the temporal response within a visual area is the
same across multiple stimulus locations. The method can be extended
to additional retinotopic visual areas with suitable elaboration of the
MRI and fMRI topographies. The use of the folding fingerprint of cor-
tical areas disambiguates the activity of nearby sources and enables
the accurate characterization of the where and when of visual cortex
activation in the human brain.

Methods

Data were collected from two healthy volunteer, male subjects.
Subjects gave written informed consent, and safety guidelines were
followed as approved by the Committee for the Protection of Human
Subjects at the University of California, Berkeley.

fMRI

Magnetic resonance images were acquired at Stanford University
using a 3-T GE Signa scanner. A special-purpose semicylindrical sur-
face coil around the back of the head was used. Functional magnetic
resonance images were oriented parallel to the calcarine sulcus. Eight
functional images were acquired every 3 s using a two-shot, two-
dimensional spiral gradient-recalled echo sequence; voxel size was
2×2×3 mm. Structural (T1-weighted) images were acquired in the
same planes and with the same resolution as the functional images to
coregister the functional and anatomical data.

fMRI stimulus

The stimulus for the fMRI experiments consisted of clockwise
rotatingwedges and expanding annuli with a cycle of 72 s, resulting in
five complete cycles during the 6-min stimulus presentation. The
wedge and ring were comprised of a flickering (reversal rate of 8 Hz)
checkerboard (Engel et al., 1997). The stimulus presentation was
repeated 4 times for each. Analysis tools standard tomany vision fMRI
groups were used for mapping the visual cortex. The three-
dimensional cortex was unfolded onto a two-dimensional flat map
to better view the retinotopic data. White matter segmentation was
performed to ensure a continuous gray matter surface for unfolding.
The white matter segmentation and unfolding were done using the
FreeSurfer software package (Dale et al., 1999; Fischl et al., 1999). The
StanfordmrVISTA toolswere used to analyze and project the fMRI data
onto theflatmaps (Teo et al., 1997). The results of this data analysis are
shown in Fig. 1a for the left hemisphere of subject 1, and in Fig. 2a for
subject 2. The colormap is the phase plot of the rotating wedge

stimulus. To define initial locations for the EEG sources, described
below, mrVISTA was used to define polygonal ROI's with linearly
interpolated wedge and ring retinotopic maps. Using these polygonal
ROI's we defined the fMRI response phase at the foveal confluence to
the fovea. These atlas maps provided the location for the EEG sources.

EEG data

Subjects were comfortably seated in a dark sound-attenuating
chamber. Electroencephalograms were continuously recorded with
the Biosemi EEG ActiveTwo system (www.biosemi.com) while
wearing a cap with 96 active electrodes. The 96-channel cap layout
was custom designed to achieve a high density of electrodes around
the occipital bone. EEG data were collected at a sampling rate of
512 Hz, and later digitally filtered with a pass band of 2–100 Hz. Along
with the EEG, stimulus synchronization pulses generated by the
WinVis neurophysiological testing platform (www.neurometrics.
com/winvis) were recorded for offline data analysis. Each run was
divided into 1 min recording periods, each separated by a subject-
defined rest interval. The time required to acquire the EEG data
required collecting data across multiple days. In order to reduce the
variability of electrode positioning the cap was carefully applied. On
each application the inion, nasion, and periauricular points were
found, and electrodes were placed known distances from these
fiducial reference points. Midline electrodes were placed along the
inion-nasion axis, and measured to ensure the line was halfway
between the periauricular points. After the final recording session the
electrode locations were digitized using a Polhemus FASTRAK system.
In addition, in order to help the registration, about a hundred points
randomly distributed around the head were digitized. These points
were then aligned to the MRI coordinates by using the surface of the
scalp. The forward modeling was calculated using a 3-shell spherical
model. The error introduced by using a spherical shell model instead
of a boundary element model is likely minimal. Since all dipole
locations are within a few centimeters of each other the differential
effect of location is smaller than that of orientation. The outer radius of
the sphere was chosen to best fit the electrode locations and the
thicknesses for the 3 shells were chosen to fit those observed from the
MRI. Scalp, skull, brain conductivity values used were 0.33 S/m,
0.01 S/m, 0.33 S/m, respectively (Goncalves et al., 2003). Forward
model calculations were done using the Brainstorm Matlab toolbox
(Mosher et al., 1993; Mosher et al., 1999; Zhang, 1995). The surface
EEG reflects the current flow along pyramidal cell dendrites that are
oriented perpendicular to the cortical surface (Nunez and Srinivasan,
2006). Therefore, the orientation of the dipole current sources is
assumed to be normal to the reconstructed white to gray matter
boundary so we constrained our source dipoles to be on the gray/
white boundary with a fixed orientation normal to the surface.

Multifocal EEG stimuli

The stimuli were presented on a CRTmonitor with 1024×768 pixel
resolution at a viewing distance of 110 cm. The background luminance
was 2.9 candelas/m2 and patch contrast was 99%. Mean patch
luminance was 16 candelas/m2. The stimulus dartboard pattern de-
fined an annuluswith an inner radius of 1 degree and an outer radius of
8.5 degrees. The pattern within this annulus for one observer was a
dartboard divided into 8 rings of 24 patches (192 patches see Fig. 3 left
side) these rings had borders at a radius of 1.5, 2.2, 2.9, 3.5, 4.5, 5.5, and
7.2 degrees of visual angle. The second observer's stimulus had 4 rings
of 24 patches (Fig. 3 right side) these rings had borders at a radius of
2.2, 3.5, and 5.5 degrees of visual angle. Each patch was a 2×2 or 2×4
checkerboard for the 192 and 96 patch stimuli. Based on estimates of
human cortical magnification the width of each ring was adjusted so
that each ring activated approximately equal areas of primary cortex
(Carney et al., 2006; Horton and Hoyt, 1991).
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The 192 (or 96) patches were simultaneously and independently
pattern reversed according to an m-sequence using a standard
multifocal paradigm (Sutter, 2001). The WinVis stimulus delivery
software ensures presentations with perfect synchronization, free of
frame drops and with flexible stimulus design (Carney et al., 2006).
The multifocal stimulus allowed us to separate out the responses for
each individual stimulus patch location. A 16-bit m-sequence was
used, corresponding to 65535 video frames. The stimulus was
presented at 60 Hz for a run time of 18.2 min per sequence. In order
to get a sufficient signal to noise ratio from all the extremely small 196
patch stimuli the run had to be repeated 25 times. The 25 replications
took required approximately 500 min of recording that was spread
over 5 days. The 96-patch stimulus required a single recording session
of 120 min consisting of 6 repeats (since patches with twice the area
require 1/4 the number of trials to get the same signal to noise ratio).
We calculated signal to noise ratio as the ratio of root-mean-square
(RMS) amplitude in the time window 90 to 180 ms post-stimulus,
with a prestimulus time window of the same length. 21–23. Across all
stimulus locations the mean SNR for subject 1 was 2.1. The best
stimulus location had a high of 4.2 with the worst having an SNR of
1.1. Subject 2 had a mean SNR 3.2, with a high of 5.3 and a low of 1.4.
We resampled the data to have an integer number of 9 samples per
video frame, which results in a sampling rate of 540 Hz. We then
extracted the responses corresponding to the pattern reversal of the
checkerboard patch using the fast Walsh transform; in the multifocal
literature it is referred to as the first cut of the second order kernel
(Sutter, 1991).

New source identification methods

This subsection presents a new method that is critical for our
goal of disambiguating temporal responses from V1 and V2.
Because these areas are adjacent, standard localization methods
have failed to adequately differentiate them. However, much is
known anatomically and physiologically about these areas. One
good source of information is the retinotopic mapping of each of
the areas. The source identification method presented in this paper
rests on two assumptions about the multifocal EEG data. One, EEG
sources from V1 and V2 are retinotopically organized and con-
sistent with an individual subject's fMRI map. Two, at a fixed
eccentricity, sources within a visual area have the same response.
We have previously made this assumption in fitting single dipoles
(Slotnick et al., 1999). The second assumption is partially sup-
ported both by the results in Baseler and Sutter (1997) and also by
our results (see Fig. 7) that show very similar estimates of the V1
and V2 time functions which were extracted separately from
each hemisphere for the same stimulus eccentricity. The common
time function assumption is crucial for obtaining separation of
closely spaced sources. However, if the response varies as a func-
tion of stimulus location at the same eccentricity the algorithm will
fit the underlying mixture of responses with only a single time
course.

The multifocal data are able to exploit these a priori assump-
tions because it contains separate responses from multiple sti-
mulus locations. However, this multiplicity of responses brings

Fig. 1. Illustration of combining fMRI and EEG retinotopic maps. This figure illustrates a complete left hemisphere mapping for subject 1. Panel a shows the fMRI data overlaid with
the initial V1 (in magenta) and V2 (in yellow) source locations for the 96 stimulus patches in this hemisphere. Panel b shows how this mapping gets translated onto the folded
cortical surface. Adjacent tangent V1 sources are separated by about 3.5 mmwhich is consistent with prior estimates(Carney et al., 2006; Dougherty et al., 2003; Schira et al., 2007).
Panel c contains scalp topographies for V1/V2 sources for all 96 stimulus patches. Each one of the topographies is a flattened representation of the 96 electrodes, with the subject's
nose toward the top. The scalp topographies are laid out retinotopically, in the same manner as the fMRI data of panel a. The topographies are the final V1/V2 topographies after the
constrained search as described in the text.
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with it data analysis challenges. The basic equation that we use
is:

Vpred de;p; t
! "

¼
X

s
A de;p; s
! "

T s; tð Þ ð1Þ

Thematrix A is the forwardmodel matrix that specifies the voltages at
the scalp. A is indexed by de,p which combines into a single index the
electrodes (e) and stimulus locations, or patches (p). The electrodes
(e) range from 1 to 96, and the patches (p) range from 1 to 192 for
subject 1 and 1 to 96 for subject 2. In the actual fitting we do 12
patches in a hemi-ring at a time to enable validation.We are especially
concerned with comparing hemi-rings of the right and left visual
field at a given eccentricity where the temporal responses are ex-
pected to be the same. The second dimension of A is (s), the source
visual area (V1 or V2). Finally, (t) specifies the time samples (1 to 161
corresponding to 296 ms). The goal of our algorithm is to determine
A(de, p,s) and T(s, t) that will minimize the sum of square error cost
function with dipole location constrained by fMRI and dipole
orientation constrained by MRI:

SSE =
X

de;p;t
Vpred de;p;t

! "
−VEEG de;p; t

! "! "2
ð2Þ

where Vpred is from Eq. (1) and VEEG is our multifocal evoked
potential data. Note that for any given time point there are 16 and
8 hemi-rings for subjects 1 and 2 with each hemi-ring having Ne

Np= 96×12 data.
The fMRI predicted topographies are a source of noise. Small errors

in identifying a patch location near a cortical fold can result in a poor
estimate of the scalp topographies for that patch. To reduce this type
of error the linear regression was iterated with the individual source
locations constrained to a 5×5 mm box centered on the fMRI defined
initial location, in order to find the match that minimized the residual

error with respect to the recorded VEPs. The topographies, shown in
Figs. 1c and 2c, are the ones that are predicted by the MRI after
optimization of source locations on the fMRI map. The signal strength
at the scalp for a dipole with an orientation pointed away from the
white matter is color coded from blue (for positive voltage) to red (for
negative voltage).

The following is a more detailed stepwise overview of the source
identification procedure.

Step 1. Get initial mapping of V1 and V2 from fMRI data corres-
ponding to the patches used in the EEG stimulus (Figs. 1a and 2a for
subjects 1 and 2). The locations on the flat map are used for matching
source location with the fMRI, and the 3d MRI based reconstruction is
used to extract source orientations (Figs. 1b and 2b). Given these
locations and orientation the forwardmodel solutions for the voltages
on the scalp can be predicted (Figs. 1c and 2c). This fMRI predicted
topography forms the matrix A(de,p,s). For ease of visual inspection
the matrix is represented in the following form. The index over
electrodes (e) is grouped into a flattened representation of the
electrode positions on the scalp. The indices over patch locations (p)
and visual area (s) are ordered consistent with the retinotopic layout
of the stimulus. These topographies are normalized to unity to avoid
biasing the matrix inversion solution procedure by relatively large, or
small, predicted topographies. Note the signal distribution for a
particular visual area typically changes slowly from patch to patch,
even though no smoothing has been done in data acquisition or data
processing. In areas where the source moves around a sulcus the
predicted surface topography for corresponding stimulus patches
changes rapidly.

Step 2. Given the present guess for dipole locations do a linear
regression to find the two source time functions: T(s,t))

T s; tð Þ = PA s;de;p

! "
VEEG de;pt

! "
ð3Þ

Fig. 2. Illustration of combining fMRI and EEG retinotopicmaps. This figure illustrates a complete left hemispheremapping for subject 2. Panel a shows the fMRI data overlaidwith the
initial V1 (in magenta) and V2 (in yellow) source locations for the 48 stimulus patches in this hemisphere. Panel b shows how this mapping gets translated onto the folded cortical
surface. Panel c contains scalp topographies for V1/V2 sources for all 48 stimulus patches. Each one of the topographies is a flattened representation of the 48 electrodes, with the
subject's nose toward the top. The scalp topographies are laid out retinotopically, in the same manner as the fMRI data of panel a. The topographies are the final V1/V2 topographies
after the constrained search as described in the text.
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PA is the pseudo-inverse of A, given by:

PA = ATA
! "−1

AT
: ð4Þ

The pseudo-inverse is the matrix method for doing linear regression
for minimizing SSE of Eq. (2) for the case of independent, equally
weighted data. PA is simply a 2×2 matrix times the forwardmodel, A.
This step gives the best time function fit to the full dataset based on
the dipole orientations specified by the MRI topography. This is the
step where having multiple patches is important for having sufficient
orthogonality between the multiple sources.

Step 3. For each stimulus patch, p, do an exhaustive grid search of
the dipole location over the tessellated cortical surface mesh points of
Figs. 1a and 2a, that are within a box 5 mm on a side centered on the
original fMRI placement. This constraint limits the dipole location to
be within one fMRI voxel length of the initial estimate. Using the
time function from Step 2 and the electrode potential for each grid
search dipole location, calculate the predicted data, Vpred(de,p, t) using
Eq. (1). Pick the location for each patch that minimizes the sum of
square error between the raw data and the predicted data as specified
by Eq. (5).

SSE pð Þ =
X

d;t
Vpred de;p; t

! "
−VEEG de;p; t

! "! "2
ð5Þ

It is important to realize that Eq. (5) differs from Eq. (2) in that p is not
summed over. By doing the grid search patch by patch the dipole
location search becomes computationally feasible. Each iteration can
give a slightly different optimal value of flat map locations because the
time functions are shifting across iterations (Eq. 3).

Step 4. Go to step 2 using the new optimal dipole locations from
Step 3. Keep iterating until the SSE converges to a minimum. It should
be noted that the source locations are never allowed to move more
than 3.5 mm from the initial locations found in Step 1. At most 10
iterations were needed for convergence.

Fig. 4 shows the flattened fMRI map colored according to surface
curvature, negative is light colored and positive curvature is dark. On
top of the curvature map are both the pre-search (V1 in yellow, and
V2 in red) and post-search (V1 in black and V2 in blue) dipole
locations. The pre and post locations are connected with a line. One
of the main points of this figure is that the magnitudes of the dipole
shifts are visible. The amount of shifting is shown in the histogram
plotted separately in Fig. 5 for each subject. The average shift on the
flat-map is 2.47±0.4 mm, with the minimum possible shift being 0
and maximum being about 3.5 mm. We also tried various other
similar values for the constraint and obtained similar results. How-
ever, large search areas, greater then 10 mm, resulted in significantly
worse cross hemisphere validation results. We might expect that on
flat regions of cortex the dipole location is highly uncertain so the
dipole would wander to a relatively random location within the
constrained square. However, if the forward model were misspeci-
fied (as is surely the case since skull/scalp conductivity is not
certain) the dipole would seek out a region with the appropriate
orientation. This could produce bunching of dipoles from neigh-
boring patches that are seeking the same orientation. One can
think of our cortically constrained search as a method for limiting
the dipole orientation to values that are consistent with the MRI
surface normal in the region of one or two fMRI voxels. Sharon et al.
(2007) compared dipole source locations to fMRI locations, very
similar to the approach of Baker et al. (2006). Sharon et al. (2007)
allowed the dipole orientation to be constrained within a factor 0.6
of the MRI cortical normal. Our constraint is more restrictive then
Sharon et al. because it only allows orientations that are within the
local region.

Results

Fig. 6 shows the V1 and V2 time functions for each hemi-ring of
stimulus patches for two subjects before the cortically constrained
search. The left and right hemisphere temporal functions are
plotted in blue and red, respectively. As described in the methods,
our forward model is unit normalized, therefore our time func-
tions become unitless. The plots in Fig. 6 are normalized to be on

Fig. 3. Stimulus layout. This shows a schematic layout of the stimulus. The outline on
the left shows the 192 patch/8 ring stimulus, while the outline on the right shows the
96 patch/4 ring stimulus. Each of the outlined areas above contained a black and white
checkerboard pattern (see example in the top patch) that was pattern reversed as a unit
according to the multifocal stimulus.

Fig. 4.Movement of dipoles on cortex after search. This figure shows the initial locations for V1 sources in yellow, along with their final positions in black. The initial V2 locations are
in red, and the final locations after the search are in blue. Subject 1 is in panel a, and subject 2 is in panel b.
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the same scale as those in Fig. 7. The waveforms are plotted with
positive representing a dipole pointing out, away from the cortex,
and negative representing a source pointing in. The results shown
are for the 8 stimulus rings viewed by subject 1 and for the 4 rings
viewed by subject 2. The left and right hemisphere responses for
areas V1 and V2 are expected to be the same within a subject
(Dandekar et al., 2007). This provides an internal validation of the
solution set since the hemi-ring data from each hemisphere, with
their unique cortical folding patterns, are independently processed.
To quantify the cross hemisphere similarity we calculated the
percent RMS error between the two waveforms. This number is
plotted in front of each waveform. The lack of agreement bet-
ween the left and right hemisphere responses was the motivating
factors to develop the iterative search algorithm described in the
methods. The search was used because the large number of small
patches used in our stimulus is highly sensitive to the initial fMRI
defined source placement. We attribute the need for the con-
strained search as being due to slight inaccuracies in the fMRI
localization plus our representing each patch by a single dipole
rather than by the integral of the dipoles within a patch. In Fig. 7 the
responses after completing the search are plotted. The time func-
tion consistency we see across hemispheres lends confidence
that the true temporal activations are being extracted. Since our

method has redundancy across hemispheres and to some extent
across rings (i.e. the time functions for adjacent rings should be very
similar) we can compare these responses in order to validate our
solutions. Most source localization methods do not provide a way to
check the solution validity. When inconsistencies appear as in the
foveal inner ring data of both subjects we know an error has
occurred, maybe in either the fMRI mapping or forward modeling
procedures. It is expected that accurate foveal responses will be
difficult to extract since the foveal confluence has been a difficult
area to extract accurate retinotopic mappings using standard fMRI
stimuli. Without accurate mapping, the sources will be constrained
to the wrong surface location resulting in inappropriate temporal
functions.

This new method rests on the assumption that to disambiguate
the response from V1 and V2 it is necessary to have an accurate
retinotopic map of the visual cortex. To further test the importance
of using fMRI data we tested the sensitivity by introducing an
artificial error in the retinotopic mapping. This was done by rigidly
translating all the source locations by 7 mm along the fMRI flat map
surface. This shift is small enough that the fMRI map still largely
overlaps with the true retinotopic cortex, but since the dipoles are
constrained to the orientation of the cortex it introduces a possibly
large error in the source orientation. Except for the 7 mm shift of

Fig. 5. Histogram of the distance dipoles moved during search. This figure shows the distribution of movements from the initial fMRI conditions.

Fig. 6. Initial time function estimates. This figure shows the initial estimated time functions for V1 and V2 for each hemi-ring before the search algorithm. The red and blue indicate
right and left hemisphere estimates. The number next to each waveform is the percent cross hemisphere difference. Plotted in a and b are the V1 and V2 responses for subject 1.
Plotted in c and d are the responses for subject 2.
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initial conditions for the search the method of extracting the time
functions is identical to that previously described. The results of this
procedure are plotted in Fig. 8. The time courses extracted are
attenuated, and the consistency between hemispheres and stimulus
rings disappears. For shifts less than 7 mm results were also
degraded, but less so. This result shows that the fMRI data is crucial
in isolating the V1 and V2 temporal responses.

As discussed, increasing the number of stimulus patches reduces
the impact of noise. Accordingly, including all 192 patches in the
regression will help but at the same time it could suffer from time
function changes as a function of eccentricity (Baseler and Sutter,
1997). Keeping this idea in mind, Fig. 9 shows the results of assum-
ing a common time function for the entire dataset for estimating the
V1 and V2 responses (192 and 96 patches for subjects 1 and 2). Fig. 9
facilitates comparison of the V1 and V2 temporal response within
and between subjects, for a given visual area both subjects have
similar onset and peak latencies, providing further validation of our
method.

Discussion

Previous methods of identifying multiple sources work well but
only if the sources are well-separated dipoles. We have presented a
method that addresses the problem of separating out responses
from very close sources as in areas V1 and V2. A critical component

of this method is the use of many stimulus patches. In principle, the
response to a single patch would be sufficient if the following four
conditions are met: (1) The VEP has a minimum of two SVD com-
ponents well above the noise level (aka: a rotating dipole), (2) the
fMRI is excellent so that the patch location in V1 and V2 is
unambiguous, (3) the MRI is excellent so that the surface normal
represents the dipole orientation and (4) the forward head model is
excellent with proper conductivity estimates. However, patches
often lack rotating dipoles, e.g. along the vertical meridian. More-
over, errors in estimating the cortical orientation from the fMRI/
MRI are easily made in the highly convoluted occipital cortex as are
errors in the forward model due to ignoring inhomogeneities in
cortex and in estimating the conductivity variations of the skull.
Since the four conditions are rarely satisfied the estimate of the
projection of the predicted head model onto the data will be off,
resulting in errors in the estimated time functions. To minimize
these errors we have found that grouping 12 patches in a hemi-ring
together is very helpful for averaging out the errors and finding
stable time functions.

In addition to minimizing errors in the MRI/fMRI and forward
model, the use of 12 patches in a hemi-ring improves the condition
number of the forward model matrix A(de,p, s). The forward matrix
has 96×12 rows corresponding to the number of electrodes times
the number of patches in a hemi-ring. The number of columns is 2,
corresponding to V1 and V2 dipoles. The condition number, given by

Fig. 7. V1 and V2 responses. Each panel of this figure shows the extracted waveforms from the linear regression on each hemi-ring of the stimulus with outer ring responses on the
top, and the inner ring responses on the bottom. The red is the right hemisphere response and the blue is the left hemisphere response. Plotted in a and b are the V1 and V2 responses
for subject 1. Plotted in c and d are the responses for subject 2. The data contributing to each hemi-ring are totally independent of each other, yet one sees consistency across
hemispheres and across rings.

Fig. 8. Responses after shift of fMRI mapping. This figure is the same as Fig. 3 except that a mismatch between the fMRI and the EEG has been introduced by rigidly shifting the flat
map correspondences by 7 mm. Compared with Fig. 7 the responses are attenuated and generally inconsistent across hemispheres.
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the ratio of the two eigenvalues of the SVD of A, is a measure of
the independence of the V1 and V2 topographies. The closer the
condition number is to 1 the more trustworthy is the linear re-
gression that is used to estimate the time functions. When 12
patches per hemi-ring are used, the poorest condition number across
both subjects (16 hemi-rings for S1 and 8 for S2) was 1.5, for the
closely spaced V1 and V2 dipoles. This is a good condition number.
For single patches the worst condition number was N30. Condition
numbers over 10 mean that 99% of the variance can be accounted for
by a single dipole. These considerations provide further evidence for
the need to use a large number of patches for estimating the time
functions.

Because of this inherent ambiguity of these localized sources
various methods have been suggested for ascertaining the identity of
the dipoles. One method used by several investigators (Clark et al.,
1995; Vanni et al., 2004; Zhang and Hood, 2004) is to use multiple
stimulus locations and try to identify a source component that has
opposite topographic polarities for stimuli in the upper versus lower
hemifields. Anatomically V1 is identified by the calcarine sulcus, with
a retinotopy that predicts a flip in the orientation of a dipolar source as
it moves around the sulcus. This gives a good prior on how a V1 source
should behave, however it is not diagnostic of a pure V1 source, since
as long as the response contains more than 50% V1 there will be a flip
in its orientation. As a result this heuristic is not adequate for isolating
the V1 component of the waveform.

Our method uses not just a general cruciform model for the shape
of the calcarine sulcus, but rather each individual subject's unique
folding fingerprint to identify the locus of the VEP. Another recent
paper (Hagler et al, 2008) also uses an individual subject's retinotopic
organization, plus the Slotnick et al. (1999) common time function as
constraints on source locations. The common time function assump-
tion is crucial for obtaining separation of closely spaced sources. Since
different patches have different mixtures of sources the benefit of
using multiple stimulus locations is more than simple averaging of
statistical errors, in that multiple patches make the condition number
of A(de,p, s) approach 1. However, if the response varies as a function
of stimulus location a common time function constraint will force a
single time course to fit the underlying heterogeneous responses.
Unlike Hagler et al. (2008) our algorithm loosened the strict
retinotopic constraint by allowing the dipoles to move slightly from

their initial fMRI determined location. In addition, our stimulus is
much denser (192 or 96 vs. 16 stimulus patches) than that of Hagler,
and allows us to compare across hemispheres and across eccentric-
ities to verify the extracted time courses. Without that validation
step it is difficult to assess the robustness of the results. Given the
differences in the stimuli, it is gratifying to see similarities bet-
ween our estimates of the V1 and V2 time functions and those of
Hagler et al.

We can use these estimated time courses to address the con-
troversy over which visual areas contribute to the early C1 compo-
nent of the VEP, with various authors claiming either V1 or V2 is
dominant (Di Russo et al., 2002). The reason for this controversy is
that disambiguating the sources of activity in early visual cortex is a
very difficult because of the above mentioned rotation problem. One
of the very best demonstrations of the difficulty of isolating the
components is provided in Fig. 6A of Hagler et al. (2008). They do
cortically constrained V1/V2/V3 dipole fitting to each of their 16
stimulus patches. The 16 time functions seem to be random com-
binations multiple waveforms. Their Fig. 6B is much more impressive
looking since the 16 waveforms (from one iso-eccentric ring) look
similar to each other. However, that similarity is a tautology of
enforcing a smoothness constraint, so that the result could not have
been different from what is shown. We argue in order to demonstrate
reliable estimate of a V1 (or V2) time function, totally independent
estimates of that function are required, such as what we did in our
Fig. 7 with 16 separate estimates (8 rings, right and left hemispheres)
for Subject 1 and 8 separate estimates (4 rings, right and left hemi-
spheres) for the V1 and V2 sources.

In Fig. 9 are V1 and V2 responses derived from applying the linear
regression in Eq. (3) to the whole field, rather than hemirings. The
initial V1 and V2 responses have similar latencies, but opposite
polarities. The recorded signal at each electrode is some linear
mixture of these sources, which will still exhibit a large initial
negative peak that still obeys the general rules as to the assumed
shape of the calcarine fissure. However based on our results we argue
that this peak, while partially reflecting the V1 signal, will be
contaminated with different amounts of other sources depending on
stimulus configuration and a subject's individual folding pattern. This
is why it is important to have a method with an internal consistency
check to verify the purity of source reconstruction. In view of the
hierarchy of visual areas it is often assumed that V1 responds earlier
than V2, and the fact that V1 and V2 show similar initial latencies in
our reconstructions might seem strange. However, depth electrodes
in macaque V1 and V2 show a similar VEP profile to the responses in
Fig. 6, with V1 and V2 waveforms having opposite polarities and
similar onset timings (Mehta et al., 2000). While single cell recordings
may reveal different V1 and V2 latencies for the quickest initially
arriving spikes (Schmolesky et al., 1998), they also find that the
distribution of responses across all cells in each area has a large
overlap of timings. We contend that the EEG signal, which is a mass
response from many cells, indicates nearly identical response latency
in the two areas. Using methods similar to ours, another group has
recently found V1 and V2 time functions that closely match those
reported here (Goh XL, Vanni L, Henriksson L, James AC, Annual
Meeting of the Organization for Human Brain Mapping 2009)
providing further validation for this general approach to source
identification. Our results (Fig. 9) on two subjects are also in good
agreement with Hagler et al.'s (2008) Fig. 7 on two subjects. All four
V1 waveforms are similar. Our V2 waveforms with a small initial
positive deflection followed by a deep negative deflection are similar
to the summation of Hagler et al.'s V2 plus V3. It is indeed possible that
since we didn't include V3 in our analysis, its contribution could have
leaked into the V2 response.

A conclusion that can be taken from our study is that there are
good reasons to believe that the approach of using fMRI/MRI
constrained dipole orientations together with a common time

Fig. 9. Responses derived from the whole visual field. Plotted in blue and cyan are the
V1 responses, with red and magenta for the V2 responses. The solid colors (blue and
red) are for subject 1, with cyan and magenta for subject 2. In the legend we also
included a quantification of the total percent RMS analogous to the previous plots.
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function for multiple patches at a given eccentricity is on the path to
giving trustworthy estimates of the responses in tightly packed visual
areas with high temporal resolution. Possible future improvements to
this method include extending the mapping to other retinotopic areas
beyond V1and V2. This disambiguation procedure should also be
extendable to arbitrary stimuli placed in known retinotopic locations.
It is our hope that these methods can be used to address how stimulus
selectivity arises in time across multiple visual areas. Distinguishing
between feedforward and feedback processes is very difficult without
high resolution in both space and time. Knowing where and when
stimulus selectivity arises provides a useful tool for analysis of neural
information processing.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2009.09.022.
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