4. The product rule for differentiation

The rule for differentiating the product of two functions f(x) and g(x) is

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

- Differentiate each of the following with respect to x.
- (a) $x \sin x$
- (b) $x^3 \cos 2x$
- (c) $x^{-1/3}e^{-3x}$

- (d) $\sqrt{x} \ln 4x$
- (e) $(x^2 x) \sin 6x$ (f) $\frac{1}{x} \left(\tan \frac{x}{3} \cos \frac{x}{3} \right)$
- Find the following derivatives.

- (a) $\frac{d}{d\theta}(\sin\theta\cos\theta)$ (b) $\frac{d}{dt}(\sin2t\,\tan5t)$ (c) $\frac{d}{dz}(\sin z\,\ln4z)$ (d) $\frac{d}{dx}\left(e^{-x/2}\,\cos\frac{x}{2}\right)$
- (e) $\frac{d}{dx}(e^{6x} \ln 6x)$ (f) $\frac{d}{d\theta}(\cos \theta \cos 3\theta)$ (g) $\frac{d}{dt}(\ln t \ln 2t)$

5. The quotient rule for differentiation

The rule for differentiating the quotient of two functions f(x) and g(x) is

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.$$

- Differentiate each of the following with respect to x.

- (a) $\frac{x}{1-x^2}$ (b) $\frac{x^4}{1-x}$ (c) $\frac{2-x}{1+2x}$ (d) $\frac{3x^2-2x^3}{2x^3+3}$ (e) $\frac{1+\sqrt{x}}{\sqrt{x}-x}$

- Find the following derivatives.

- (a) $\frac{d}{dx} \left(\frac{\sin x}{x} \right)$ (b) $\frac{d}{dx} \left(\frac{\ln x}{x^{4/3}} \right)$ (c) $\frac{d}{d\theta} \left(\frac{\theta^2}{\tan 2\theta} \right)$ (d) $\frac{d}{dz} \left(\frac{e^z}{\sqrt{z}} \right)$ (e) $\frac{d}{dx} \left(\frac{x^2}{\ln 2x} \right)$
- Find the following derivatives.

- (a) $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\sin 2t}{\sin 5t} \right)$ (b) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^{-2x}}{\tan x} \right)$ (c) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x}{\cos 3x} \right)$ (d) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln 3x}{\ln 4x} \right)$

6. The chain rule for differentiation

The chain rule is used to differentiate a "function of a function":

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(g(x))\right) = f'(g(x)).g'(x).$$

1. Differentiate each of the following with respect to x.

(a)
$$(4+3x)^2$$
 (b) $(1-x^4)^3$ (c) $\frac{1}{(1-2x)^2}$ (d) $\sqrt{1+x^2}$

(e)
$$\left(x-\frac{1}{x}\right)^{-1/3}$$
 (f) $(2x^2-3x+5)^{5/2}$ (g) $\sqrt{x-2\sqrt{x}}$ (h) $\frac{1}{\sqrt{4x^2-x^4}}$

2. Find the following derivatives. (Remember the notation for powers of trigonometric functions: " $\sin^2 x$ " means $(\sin x)^2$, etc.)

(a)
$$\frac{\mathrm{d}}{\mathrm{d}\theta}(\sin^2\theta)$$
 (b) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\sin\theta^2)$ (c) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\sin(\sin\theta))$ (d) $\frac{\mathrm{d}}{\mathrm{d}x}(\tan(3-4x))$

(e)
$$\frac{\mathrm{d}}{\mathrm{d}z}(\cos^5 5z)$$
 (f) $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\cos^3 x}\right)$ (g) $\frac{\mathrm{d}}{\mathrm{d}t}(\sin(2-t-3t^2))$

3. Find the following derivatives. (The notation " $\exp x$ " is used rather than " e^x " where it is clearer.)

$$\text{(a)} \ \frac{\mathrm{d}}{\mathrm{d}y} \left(\exp(-y^2) \right) \quad \text{(b)} \ \frac{\mathrm{d}}{\mathrm{d}x} (\exp(\cos 3x)) \quad \text{(c)} \ \frac{\mathrm{d}}{\mathrm{d}x} (\cos(e^{3x})) \qquad \text{(d)} \ \frac{\mathrm{d}}{\mathrm{d}x} (\ln(\sin 4x))$$

(e)
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin(\ln 4x))$$
 (f) $\frac{\mathrm{d}}{\mathrm{d}x}(\ln(e^x - e^{-x}))$ (g) $\frac{\mathrm{d}}{\mathrm{d}t}\left(\sqrt{e^{3t} - 3\cos 3t}\right)$

7. Differentiation of functions defined implicitly

1. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of y when x and y are related by the following equations. You will need the formula $\frac{\mathrm{d}y}{\mathrm{d}x}=1/\frac{\mathrm{d}x}{\mathrm{d}y}$.

(a)
$$x=y-y^3$$
 (b) $x=y^2+rac{1}{y}$ (c) $x=e^y+e^{2y}$ (d) $x=\ln(y-e^{-y})$

2. Find $\frac{dy}{dx}$ in terms of x and/or y when x and y are related by the following equations.

(a)
$$\cos 2x = \tan y$$
 (b) $x + y^2 = y - x^2$ (c) $y - \sin y = \cos x$

(d)
$$e^x - x = e^{2y} + 2y$$
 (e) $x + e^y = \ln x + \ln y$ (f) $y = (x - y)^3$

8. Differentiation of functions defined parametrically

If x and y are both functions of a parameter t, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$$

- 1. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t when x and y are related by the following pairs of parametric
- (a) $x = \sin t$, $y = \cos t$ (b) $x = t \frac{1}{t}$, $y = 1 t^2$
- (c) $x = e^{2t} + t$, $y = e^t + t^2$ (d) $x = \ln t + t$, $y = t \ln t$
- 2. Find $\frac{\mathrm{d}x}{\mathrm{d}y}$ in terms of t when x and y are related by the following pairs of parametric
- (a) $x = 3t + t^3$, $y = 2t^2 + t^4$ (b) $x = \cos 2t$, $y = \tan 2t$

9. Miscellaneous differentiation exercises

- 1. Find the following derivatives, each of which requires one of the techniques covered in previous sections. You have to decide which technique is required for each derivative!

- (a) $\frac{d}{dx}(x^3 \tan 4x)$ (b) $\frac{d}{dt}(\tan^3 4t)$ (c) $\frac{d}{dx}(\exp(3\tan 4x))$ (d) $\frac{d}{d\theta}\left(\frac{3\theta}{\tan 4\theta}\right)$
- (e) $\frac{\mathrm{d}}{\mathrm{d}x}(\exp(x-e^x))$ (f) $\frac{\mathrm{d}}{\mathrm{d}y}\left(\frac{y^4+y^{-4}}{y+y^{-1}}\right)$ (g) $\frac{\mathrm{d}}{\mathrm{d}x}(2^xx^2)$ (h) $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\ln x-x}\right)$

- (i) $\frac{\mathrm{d}}{\mathrm{d}x} \left(5^{-3x} \right)$ (j) $\frac{\mathrm{d}}{\mathrm{d}t} (\ln(\ln t))$ (k) $\frac{\mathrm{d}}{\mathrm{d}z} \left(\ln\left(\frac{1-z}{1+z}\right)^2 \right)$
- Find the following derivatives, which require both the product and quotient rules.

- (a) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x \cos x}{1 \cos x} \right)$ (b) $\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{e^z}{z \ln z} \right)$ (c) $\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\sin 3\theta \cos 2\theta}{\tan 4\theta} \right)$
- Find the following derivatives, which require the chain rule as well as either the product rule or the quotient rule.

- (a) $\frac{\mathrm{d}}{\mathrm{d}t}(e^{-t}\ln(e^t+1))$ (b) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\sin^2 3\theta \, \cos^4 3\theta)$ (c) $\frac{\mathrm{d}}{\mathrm{d}x}\left(\left(\frac{1-x^2}{1+x^2}\right)^{3/2}\right)$

- (d) $\frac{d}{d\theta}(\exp(\theta\cos\theta))$ (e) $\frac{d}{dx}\left((x\ln x)^3\right)$ (f) $\frac{d}{dx}\left(\exp\left(\frac{1-x}{1+x}\right)\right)$
- (g) $\frac{\mathrm{d}}{\mathrm{d}u} \left(\frac{1}{u^2 \sqrt{u^2 1}} \right)$

Find the following derivatives, which require use of the chain rule more than once.

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{1-\cos^3 x})$$

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{1-\cos^3x})$$
 (b) $\frac{\mathrm{d}}{\mathrm{d}x}\left(\exp\left((x-x^2)^{1/4}\right)\right)$ (c) $\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\ln\left(\tan\frac{1}{\theta}\right)\right)$

(c)
$$\frac{d}{d\theta} \left(\ln \left(\tan \frac{1}{\theta} \right) \right)$$

Find the following second derivatives.

(a)
$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(\sqrt{1+x^2})$$

(b)
$$\frac{d^2}{dz^2}(\exp(z^2))$$

(c)
$$\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} (\sin^3 \theta)$$

$$\text{(a) } \frac{\mathrm{d}^2}{\mathrm{d} x^2} (\sqrt{1+x^2}) \qquad \text{(b) } \frac{\mathrm{d}^2}{\mathrm{d} z^2} (\exp(z^2)) \qquad \text{(c) } \frac{\mathrm{d}^2}{\mathrm{d} \theta^2} (\sin^3 \theta) \qquad \text{(d) } \frac{\mathrm{d}^2}{\mathrm{d} x^2} \left(\frac{1}{(1-x^4)^4} \right)$$

6. Remembering that $\csc x = \frac{1}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\cot x = \frac{\cos x}{\sin x}$, find the following derivatives.

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(\csc 2x)$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}\theta}(\sec^2\theta)$$

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(\csc 2x)$$
 (b) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\sec^2\theta)$ (c) $\frac{\mathrm{d}}{\mathrm{d}z}(\sqrt{1+\cot z})$

(d)
$$\frac{d}{d\theta}(\csc^2\theta\cot^3\theta)$$

(d)
$$\frac{\mathrm{d}}{\mathrm{d}\theta}(\csc^2\theta\cot^3\theta)$$
 (e) $\frac{\mathrm{d}}{\mathrm{d}x}(\ln(\sec x + \tan x))$ (f) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\tan(\sec\theta))$

(f)
$$\frac{d}{d\theta}(\tan(\sec\theta))$$