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Subgap states at ferromagnetic and spiral-ordered magnetic chains in two-dimensional
superconductors. I. Continuum description
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We consider subgap bands induced in a two-dimensional superconductor by a densely packed chain of mag-
netic moments with ferromagnetic or spiral alignments. We show that by contrast with sparsely packed chains
a consistent description requires that all wavelengths are taken into account for the scattering at the magnetic
moments. The resulting subgap states are a composition of Yu-Shiba-Rusinov-type states and magnetic scattering
states, whose mixture becomes especially important to understand the nature and dimensional renormalization
of gap closures for spiral magnetic alignments under increasing scattering strength, particularly as the spiral
becomes commensurate with the Fermi wavelength. The results are fully analytic in the form of Green’s functions
and provide the tools for further analysis of the properties of the subgap states.
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I. INTRODUCTION

The recent years have brought remarkable evidence that
combinations of ordinary electronic materials can be tuned
such that they exhibit quantum states with novel properties.
Attention was given particularly to obtain distinct topolog-
ical properties through quantum material design. Topology
adds a twist to gapped phases that is usually macroscopically
not perceivable but causes gapless boundary states to appear
at any interface between materials of different topological
classification. The statistics of such boundary states can be
distinct from both fermions and bosons, which makes topolog-
ical states not only fundamentally attractive but also suitable
for applications such as topological quantum computing [1].
Both aspects are well connected through the recent focus on
Majorana boundary modes [2–5].

Topological classification is largely a consequence of
available symmetries in the system [6–9], which makes
superconductors with their built-in particle-hole symmetry
attractive material candidates. One approach for obtaining
different topological phases relies on the addition of magnetic
impurities to an ordinary superconductor. As shown by Yu,
Shiba, and Rusinov (YSR) in the 1960s [10–13] a bound
state develops in the superconducting gap at the location of a
magnetic impurity. This work has found a renaissance when it
was realized that arranging such impurities in chains, such that
the bound electrons can hop between different impurity sites,
can lead to subgap bands of different topological classifica-
tions upon tuning the impurity strength and the alignment of
the magnetic moments [14–32]. These Shiba chains provide
a complementary approach for the current vast activities on
other one-dimensional (1D) systems with topological physics.
The latter were initiated by the consideration of 1D chan-
nels with strong spin-orbit interaction and superconductivity
[33–40] and of topological insulator-superconductor struc-
tures [41]. Similar physics was shown to occur in Josephson

junction arrays [42–44], on the edge of magnetic islands on
superconductors [45], in proximitized nanowires [46–51], and
in magnetic chains on substrates with spiral magnetic order
[30,52–58].

The tight binding model describing the Shiba chains pro-
vides a transparent approach to the subgap bands and, through
its resemblance with the Ising-Majorana chain [59], to their
topological properties [60]. However, the solutions usually fo-
cus only on the novel properties arising from the hybridization
of the YSR states.

In this paper we demonstrate that for dense chains as shown
in Fig. 1 this focus must generally be widened to fully take
into account the dimensionality of chain and substrate and
the magnetic properties that already exist in the normal state.
The latter have a strong impact on the bands developing in-
side the superconducting gap from scattering on the impurity
chain. The impact is most notable at large momenta, in partic-
ular in the form of otherwise missed gap closings at momenta
larger that the Fermi momentum kF for ferromagnetic chains.
Such effects also cause distinct modifications at small mo-
menta that become especially important for spiral magnetic
chains. The latter case is of particular interest for the topo-
logical classification of the subgap bands. We do not discuss
topological properties in this paper though. Indeed the spatial
spread and Nambu-spin space texture of the subgap wave
functions cause a number of subtleties and distinct features
in the topological classification that require a full discussion.
As this consists in an important but specific application of the
results achieved here we have split this work into two parts.
Part I is this paper. In Part II [61] we address how to correctly
take the spatial structure of the wave functions into account to
obtain the correct topological classification through a family
of spatially dependent topological Hamiltonians. We show
there, in particular, that the spatial spread can be linked to a
topological significance of the zeros of the Green’s functions.
The latter is a characteristic otherwise primarily found for
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FIG. 1. Sketch of the 2D s-wave superconductor with the con-
tinuous, spiral-ordered line of magnetic moments at y = 0, periodic
in π/km along x. The yellow tape illustrates the modification of the
local density of states by the subgap states.

strongly correlated systems [62,63], and the precise form of
the Green’s function as established in this paper, Part I, will
be of crucial importance.

Figure 1 provides a sketch of the system we consider,
a densely packed magnetic chain that can be in ferro-
magnetic or spiral magnetic arrangement in contact with a
two-dimensional (2D) superconducting substrate. We choose
a 2D substrate because its YSR states have a larger range
than in three dimensions and unless the impurities are very
widely spaced the YSR states reach well beyond the nearest
neighbors [64]. For closer spacings the tight binding hy-
bridization picture of YSR states would require longer and
longer range hoppings with in principle arbitrary truncations
at some distance. To avoid this arbitrariness, we approach
instead the physics directly from the dense chain limit in
which the distance a between the magnetic scatterers is small,
akF � 1, and the chain can be modeled as a continuous line
of scatterers. We then solve the problem exactly through the
computation of the Green’s function that includes the scat-
tering on the impurity chain, and deduce from this result the
subgap band structure as well as the topological properties.
We dedicate a part of the discussion to working out the sig-
nificant differences compared with a treatment that would be
based only on the hybridization of the YSR states (Shiba
bands). Through this we provide a complete framework for
the features appearing from corrections to the tight binding
picture that were noted before [30,65–67] and explain their
origin in an explicit and accessible context. In comparison
with pure Shiba bands the subgap band structure is richer and
shows marked features and further gap closings at high mo-
menta, near or beyond kF . Such features resemble the recently
reported band structure of ferromagnetic Mn chains on a Nb
superconductor [31,32], and a comparison with the present
theory would likely be useful. We discuss ferromagnetic and
spiral orders but not any mechanism causing a specific spiral
(such as in Refs. [68,69]) and instead use the spiral winding
wave number km as a tuning parameter.

Our results for the continuum model are analytic, and
we present explicit formulas for various physical characteris-
tics. Throughout we provide a further independent validation
through the numerical solution of a 2D superconductor lattice
model with embedded magnetic impurities. Although the lat-
tice is described by a tight binding model, we do not make any
assumption on the nature of the subgap states. The numerics

therefore go beyond the YSR hybridization assumption too
and exhibit the same physics as the continuum model to a
remarkable accuracy.

The further structure of the paper is the following. In Sec. II
we develop the model and compute the full Green’s function
exactly. In Sec. III we focus on a ferromagnetic chain, pro-
viding a physical basis for the induced subgap bands which is
readily extended on inclusion of spiral order. To corroborate
these findings, we compare the analytic results in Sec. IV
with self-consistent numerics, finding excellent agreement.
The spiral interface is then described in Sec. V based on the
groundwork of Sec. III. Section VI contains the conclusions.
Some details of the calculation and verifications are described
in the Appendixes. A discussion of the consequences of the
spatial spread and the Nambu-spin texture of the subgap wave
functions on the topological classification is given in a sepa-
rate paper, Part II [61].

II. MODEL

The 2D superconductor is described by the Hamiltonian

H0 =
∑
k,σ

εkc†
k,σ ck,σ + (�c−k,↓ck,↑ + H.c.), (1)

with the electron operators ck,σ for momentum k = (kx, ky )
and spin σ =↑,↓= +,−, the dispersion εk = (k2

x + k2
y −

k2
F )/2m, assumed to have circular symmetry, with effective

mass m and Fermi momentum kF , and the s-wave bulk gap �.
We set h̄ = 1 throughout. The scattering on the dense chain of
classical moments (placed at y = 0) is described by

Hm = Vm

∫
dx M(x) · S(x, y = 0), (2)

where (x, y) are the spatial coordinates, Vm is the mag-
netic scattering strength, S(x, y) is the electron spin operator,
and M(x) = cos(2kmx)ê1 + sin(2kmx)ê2 describes the planar
magnetic spiral with period π/km and arbitrary orthogonal
unit vectors ê1,2. We do not impose a self-ordering mechanism
that would fix km [46–51,68,69] but leave km as a tuning pa-
rameter. By choosing the spin quantization axis perpendicular
to ê1,2 we can absorb the momentum shifts induced by M(x)
through a gauge transformation [70],

c(kx,ky ),σ → c̃(kx,ky ),σ = c(kx−σkm,ky ),σ , (3)

such that

Hm = VmL−1
∑

kx,ky,k′
y

c̃†
(kx,ky ),↑c̃(kx,k′

y ),↓ + H.c. (4)

describes a line of ferromagnetic scatterers. Here, L is the
chain length, and eventually we let L → ∞. The gauge
transformation also transforms the kinetic energy, εk →
ε(kx+σkm,ky ), but leaves the pairing term unchanged. Note that
in a purely 1D system, this gauge transformation is identical
to the effect of a spin-orbit interaction [70].

The inhomogeneous problem with a chain of magnetic
scatterers allows for an exact solution through scattering the-
ory. This will provide us with the full Green’s functions for
this system and thus conveniently allow for a full characteriza-
tion of the electronic structure. Since in the gauge transformed
basis we maintain the translational invariance along the kx
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direction, we will work in mixed momentum-position (kx, y)
space. Due to the spin-flip scattering by Hm we must further-
more consider an extended Nambu-spin basis

(c̃†
k,↑, c̃†

k,↓, c̃−k,↓, c̃−k,↑), (5)

with the restriction kx � 0 to avoid double counting of states.
Notice that this basis is expressed in the gauge transformed
operators, Eq. (3), and does not have the minus sign that is
used, e.g., in front of c̃−k,↑ in parts of the literature. The
retarded Green’s function of the superconducting substrate
then takes the form

g(ω, k) =
∑

σ

τ σ
0 ω+ + τσ

z εkσ + στσ
x �

ω2+ − ε2
kσ − �2

, (6)

where ω+ = ω + iη and η > 0 is an infinitesimal shift, k± =
(kx ± km, ky), and τ±

α = τα (σ0 ± σz )/2, for the Pauli matrices
in Nambu and spin space τα and σα , respectively (with τ0, σ0

being the unit matrices). To go to (kx, y) space, we let L →
∞ and calculate g(ω, kx, y) = ∫ ∞

−∞(dky/2π )eiyky g(ω, k). This
can be performed exactly for a quadratic dispersion by
standard contour integration. In contrast to the full Fourier
transformation to (kx, ky) space this integration does not re-
quire a cutoff at the Debye frequency and can be calculated
exactly. This computation is straightforward but requires some
care with the position of the poles in the complex plane. This
is of minor importance for the following discussion, and we
have thus relegated this calculation to Appendix A. The result
can be written in the compact form

g(ω, kx, y) =
∑

σ

−iπρ

2kF

√
ω̃2 − �̃2 + iη

× {
ω̃+ξσ τ σ

0 + σ�̃ξσ τ σ
x

+ [
(κ2

σ − 1)ξσ + χσ

]
τσ

z

}
, (7)

where ρ = m/π is the 2D density of states at the Fermi
energy, ω̃ = ω/EF , �̃ = �/EF are dimensionless frequency
and gap, for EF = k2

F /2m, and we have defined

κσ = (kx + σkm)/kF , (8)

ξσ = p−1
σ,+ei|y|kF pσ,+ + p−1

σ,−e−i|y|kF pσ,− , (9)

χσ = pσ,+ei|y|kF pσ,+ + pσ,−e−i|y|kF pσ,− , (10)

with

pσ,± = [1 − κ2
σ ± (ω̃2 − �̃2 + iη)1/2]1/2. (11)

The Green’s function in Eq. (7) has been written down in such
a form that it is valid for any kx, y, and |ω| ≷ �.

We emphasize that we used the exact quadratic dispersion
relation for the integration and did not make any approx-
imation such as replacing the ky integration by an energy
integration with a constant density of states. Indeed we will
show in Sec. III that such approximations are dangerous in
this case and lead to erroneous conclusions about the subgap
band structure.

We note for comparison that the treatment of Shiba chains
takes a different approach [16] by proceeding through the full
real space dependence of the Green’s (or wave) functions and
bringing it into the form of a hopping integral in the limit

of akF � 1. This approach becomes, however, inapplicable
for dense chains where akF � 1 as is the case experimentally
[23,25,27–29,31,32].

The scattering on the magnetic chain is pinned to y = 0
but preserves kx in the gauge transformed basis [Eq. (3)].
It can thus be included in the Green’s function through the
Dyson equation for fixed parameter kx, which in the T-matrix
formulation reads

G(ω, kx, y, y′) = g(ω, kx, y − y′)

+ g(ω, kx, y)T (ω, kx )g(ω, kx,−y′), (12)

where the T matrix is given by the (ω, kx )-dependent matrix

T (ω, kx ) = [(Vmτzσx )−1 − g(ω, kx, 0)]−1. (13)

This solution is exact for the chosen model for all Vm, km

and requires for T (ω, kx ) only the inversion of a 4 × 4 ma-
trix. The poles of the Green’s function provide the spectrum,
and all subgap states arise from the poles of the T matrix;
hence det T −1 = 0 provides the criterion for the existence of
a subgap state. The direct computation of G and T consists
of a number of matrix multiplications and inversions; this last
step is generally done numerically, but we shall provide some
analytic solutions for special cases such as a ferromagnetic
interface.

III. FERROMAGNETIC INTERFACE

We start our discussion with the ferromagnetic interface.
Already in this case the physics extracted from the exact
Green’s function, Eq. (12), and the T matrix, Eq. (13), leads
to a rich set of consequences. We parallel this analysis with
a long wavelength approximation (LWA), which is an often
used approximation and captures the idea of how the YSR
physics extends to subgap Shiba bands. We show, however,
that the LWA misses important physics at higher momenta
where indeed the physics is instead due to a dimensionally
renormalized Zeeman interaction. The latter is of main im-
portance near kx = ±kF and enters there in competition with
superconductivity. Such physics is beyond the YSR scenario
and thus also beyond the tight binding hybridization of YSR
states. Yet it leads to an important modification of the subgap
band structure and notably to a gap closing at momentum
|kx| > kF at strong enough impurity potential Vm. This mod-
ification causes thus subgap features that are qualitatively
different from the impurity chains with large spacing, and we
provide thus a detailed comparison with the LWA.

This sets the basis for the discussion in later sections,
where we will see that the LWA completely fails to capture the
physics for spiral chains with spiral wavelengths approach-
ing and shorter than the Fermi wavelength. Since such short
spiral wavelengths are those of most interest for topological
properties, it is essential that the difference between the exact
and approximate results is fully understood. It should be noted
that the new features are a consequence of the close packing
of the impurities and not of the continuum model. Indeed in
Sec. IV we will compare the results with a fully self-consistent
numerical solution of a tight binding model and find that all
features are quantitatively reproduced.
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(a) (b) (c) (d) (e)

FIG. 2. Subgap bands obtained from the exact Green’s function (thick, black curves) and the long wavelength approximation (LWA)
(dashed, red curves) for the ferromagnetic interface (km = 0). (a)–(e) show an increasing scattering strength Cm = πρVm/kF , where ρ = m/π .
The LWA wrongly predicts a gap closure as expected by analogy with YSR states near kx = kF for arbitrarily small Cm which moves to kx = 0
with increasing Cm until Cm = 1, after which a gap opens. In contrast, the exact result correctly has a gap at small Cm, which closes at Cm = �̃1/2

but splits for larger Cm into two gap closing points k0,1. While the k0 gap wanders to kx = 0 and reopens at Cm = (1 + �̃2)1/4 corresponding to
YSR physics, the k1 gap stays closed above kF for any Cm > �̃1/2.

As the second goal of this section we show how the em-
bedding of a 1D chain in a 2D substrate quantitatively differs
from a pure 1D chain. Although the qualitative features of the
subgap bands are well reproduced by the pure 1D system, the
embedding in 2D causes a dimensional renormalization of, for
instance, the interaction strengths for gap closings.

Our choice of starting with the ferromagnetic interface
(km = 0) is based on the fact that the subgap bands are
fully analytically accessible. There are six solutions ω(kx ) to
det T −1 = 0 that can be reduced to solving a cubic equation
(see Appendix B). All but two solutions are irrelevant because
they either lie above the gap or are complex. The remaining
two solutions are related by particle-hole symmetry and take
the form (ω̃ = ω/EF )

ω̃(kx ) = ±
√

−(b + γ + δ0/γ )/3, (14)

with the parameters γ = [(δ1 +
√

δ2
1 − 4δ3

0 )/2]1/3,
δ0 = b2 − 3c, δ1 = 2b3 − 9bc + 27d , which depend on
b = −2(E − C2

m)2 − 3�̃2, c = 4�̃2(−C2
mE + E2 + C4

m) +
(E − C2

m)4 + 3�̃4, and d = −�̃2(−C4
m + �̃2 + E2)2. Here,

the kx dependence enters through the dimensionless
quantity E = (kx/kF )2 − 1. Furthermore, �̃ = �/EF is
the dimensionless gap, and

Cm = πρVm/kF (15)

is the dimensionless magnetic scattering strength. These solu-
tions are plotted as the solid, black curves in Fig. 2.

A. YSR correspondence via the long wavelength approximation

To highlight the significance of obtaining the exact result
for the Green’s function, we start the discussion with the
comparison with the LWA. The latter relies on an often used,
usually sensible, approximation of the ky integration by an
energy integration with constant density of states [3,71–73]
and, as mentioned above, provides the means to make a direct
connection with the subgap band structure obtained by the
hybridization of YSR states that underlies the tight binding
modeling of dilute impurity chains. We will show, however,
that for a dense chain the approximation has a quite stringent
limitation to small momenta kx and fails to resolve the features
of the subgap band structure at shorter wavelengths that are
hence not captured by a purely YSR physics.

The LWA arises from replacing the momentum integration
by an energy integration, assuming a constant proportionality

factor between ky and the changing energy. The advantage
of this approximation is that it captures the universal physics
created by electronic fluctuations about EF that is independent
of the detailed band structure. Due to this it is often a good
starting point when going from momentum to real space.
This approximation captures indeed the idea of the wide band
approximation, in which the variations of the density of states
for the considered momenta are negligible.

With the “LWA” we have named the approximation here
differently though. The reason is that for the partial Fourier
transformation to the mixed momentum-position representa-
tion (kx, y) the assumption of matching with the ky variation
alone the full density of states can no longer be maintained
when kx is not small. This can indeed be seen in Fig. 3.
The replacement of the momentum integration by an energy
integration works well if the change of momentum can be
matched with a change in energy such as indicated in the

FIG. 3. Illustration of the difference between the correct ky in-
tegration and the common replacement of momentum by energy
integration. Since energy increases along the radial k direction, a
change dεk corresponds to a change from an inner to an outer energy
shell. In contrast, dky provides a step in the vertical direction at
fixed kx . For values |kx| � kF the angle θ between the dky and dεk

steps is small, and it is safe to replace the ky integration by an εk

integration as done in the long wavelength approximation (LWA).
For |kx| → kF , however, both directions become perpendicular near
the Fermi surface, and the contribution dεk

dky
to the integral becomes

singular, marking a clear breakdown of the LWA.
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figure by the change from the inner to the outer constant
energy shell. However, since we integrate only over ky, along
the dashed vertical line in the figure, a change dky does pro-
duce a change of energy proportional to dε only for kx ≈ 0.
With increasing kx the energy change is reduced, and for an
integration near ky = 0 there is no energy change over dky at
all. In other words, the integration involves the partial density
of states at fixed kx, given by ∂ky/∂εk|kx , which only for
large ky is proportional to the full density of states. Since the
dominant physics occurs at |k| ≈ kF , this means that the LWA
is limited to |ky| � kF , or |kx| � kF . It thus can capture the
YSR physics which does not depend on the direction of k but
misses, as detailed below, the Zeeman interaction physics that
shapes the band structure at |kx| ≈ kF .

To see this concretely, let us consider the LWA of Eq. (7).
The latter has been used in the literature [3,71–73], and for
completeness it is rederived in full detail in Appendix C. The
resulting Green’s function becomes, for km = 0,

g(ω, kx, y) = −2iπρeπρi|y|
√

ω2−�2+iη/p

p
√

ω2 − �2 + iη

× [(ω+τ0σ0 + �τxσz ) cos(yp)

+ i
√

ω2 − �2 + iη τzσ0 sin(|y|p)], (16)

with p =
√

k2
F − k2

x . We note that the last term proportional to
sin(|y|p) is absent in previously derived expressions [71,72]
due to even more stringent approximations therein. Using
Eq. (16) in the T matrix of Eq. (13) allows us to compute
the subgap band structure again through the poles of det T .
Figure 2 shows the results (red, dashed curves) in comparison
with the subgap band structure from the exact Green’s func-
tion (black, solid curves).

At kx ≈ 0 there is a good agreement, and we recover the
band structure of the LWA,

ω = ±�
C2

m − (
1 − k2

x

/
k2

F

)
C2

m + (
1 − k2

x

/
k2

F

) , (17)

for 0 � kx < kF and Cm = πρVm/kF [Eq. (15)]. Equation (17)
extends the well-known expression for single-impurity YSR
states [10–13,16,65,66] into a hybridized band, and we iden-
tify this structure as the band formed by the overlapping YSR
wave functions in the dense impurity limit. Hence we identify
these bands, arising purely from the LWA, as corresponding
to Shiba bands.

It is worth noting that the LWA is equivalent to expanding
the exact Green’s function in Eq. (7) in (ω2 − �2)1/2 un-
der the assumption (ω2 − �2)1/2 � EF [1 − (kx ± km)2/k2

F ],
where we keep now a general km. It is clear that this assump-
tion never holds for all kx and requires |kx| � |kF ± km|. For
km = 0 we recover the LWA limitation from above, but we
see that for km �= 0 the domain of validity of LWA becomes
smaller with growing km and at the topologically most inter-
esting value of km = kF the LWA is no longer applicable at
all.

By contrast, the exact Green’s function in Eq. (7) does
not have this limitation, and it is in this sense that we call it
“exact.” It takes fully into account that a change of momentum
along one direction does not imply necessarily a change of

energy. The assumption of an isotropic quadratic dispersion
relation facilitates the calculation but is not essential itself.

B. Dimensionally renormalized Zeeman shift
via comparison with the 1D model

The physics missed by the LWA is by no means subtle,
and it is best worked out by a comparison with a purely
1D model. In this way it is made clear that the additional
gap closures neglected when focusing on Shiba bands are
due to a conventional Zeeman shift of the bands, yet subject
to a significant renormalization arising from the dimensional
mismatch between substrate and chain.

Let us indeed focus first on a purely 1D system, a chain
with induced superconductivity and classical magnetic mo-
ments (or equivalently a global magnetic field). For the
ferromagnetic case we can choose the magnetization along
the spin-z axis, and the Hamiltonian at momentum k is then
written as

H (k) = εkτz + V̌mσzτz + �σzτx, (18)

where εk = (k2 − k2
F )/2m and we write V̌m to distinguish it

from the Vm of the 2D case. For the further discussion we
assume V̌m,� > 0. The energy eigenvalues correspond to two
Zeeman shifted dispersions E±

+ (k) = V̌m ±
√

ε2
k + �2 and

E±
− (k) = −V̌m ±

√
ε2

k + �2 . These dispersions incorporate
the competition between magnetic field and superconduc-
tivity: At V̌m < � the two bands are only lightly split, but
the superconducting gap dominates. At V̌m > �, however,
the shift is larger than the gap, and for small enough εk the
particlelike band of one spin sector lies below the holelike
band of the other spin sector.

The transition between the two regimes occurs at V̌m = �,
at which the two bands meet at k = ±kF and form a Dirac-
like crossing. For increasing V̌m this crossing splits into two
parts, one traveling towards k = 0 and disappearing through
the opening of again a gap when it reaches k = 0, and one
moving to momenta k > kF but never opening into any gap.

These are the exact analogs of the subgap features shown
in Fig. 2, and the latter thus have a very natural and straight-
forward explanation. Although the magnetic moments cannot
modify the bulk properties of the superconductors, they have
a significant impact as a Zeeman field on the subgap states
because the latter are confined to the region of the impurity
chain. Hence all the features of the 1D chain are found here
too. Nevertheless, the effect of the Zeeman field is weakened
because the localization is not perfect and the states extend
still far into the superconductor. This causes a dimensional
renormalization of the critical coupling strengths Vm for the
different gap closures, and rather curiously, most of this
physics is just eliminated by the LWA.

In Table I we show the dimensional renormalization by
comparing the coupling strengths for the different band clo-
sures for the 1D and 2D models, including there also the case
for general spiral interfaces with km �= 0. The values for the
1D model are read off from the eigenvalues of Eq. (18) with
the additional inclusion of the gauge shifts k → k ± km for
spiral magnetic fields, and the values for the 2D system are
read off from the poles of the T matrix as given by Eq. (13) for
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TABLE I. Comparison of possible gap closures in the 2D model and 1D model, where the magnetic interaction strength Cm = πρVm/kF ,
such that kFVm and V̌m have units of energy, illustrating the difference in units and prefactors depending on dimensionality. Furthermore, if one
instead normalizes by the length scale kF [(1 − k2

m/k2
F )2 + �̃2]1/4 = kF |p±|, which appears naturally in Eq. (7), it is clear that the difference

between pure 1D and a 1D chain in a 2D substrate is captured entirely by this dimensional renormalization. In the 1D model these are the only
possible gap closures; either �, kx , or km must be 0 to obtain a gap closure.

2D model 1D model

km = 0, kx = kF Cm = �̃1/2 V̌m/EF = �̃

km = 0, kx = 0 Cm = [1 + �̃2]1/4 V̌m/EF = [1 + �̃2]1/2

km �= 0, kx = 0 Cm = [(1 − k2
m/k2

F )2 + �̃2]1/4 V̌m/EF = [(1 − k2
m/k2

F )2 + �̃2]1/2

km = kF , kx = 0 Cm = �̃1/2 V̌m/EF = �̃

the ferromagnetic interface and from Eq. (19), given further
below, for the spiral interfaces.

The dimensional renormalization is indeed significant but
has an uncomplicated scaling form in that, for instance, a
dimensionless critical magnetic coupling Cm is changed from
Cm = �̃ in 1D to Cm = �̃1/2 in 2D. Since �̃ = �/EF < 1,
the required interaction strengths Vm are much larger.

IV. SELF-CONSISTENT NUMERICS

To provide an independent verification of the conclu-
sions obtained above, we perform self-consistent numerical
computation based on a tight binding discretization of the
Hamiltonians given by Eqs. (1) and (2). This allows us to
demonstrate that the physics is genuine beyond a strict contin-
uum model. We focus here on comparison of results between
the numerical and analytic models, and to avoid a strong
interruption of the narrative, we leave the further descrip-
tion of the tight binding model and exact parameters used
to Appendix D. We note the remarkable degree of agree-
ment between the analytic and numerically determined subgap
bands.

In Figs. 4(e)–4(h) we show the resultant subgap energy
bands obtained from the numerics in the appropriate limit
where kF � π/a compared with those from the exact solution
of the continuum model in Figs. 4(a)–4(d). We denote the
impurity scattering strength V̂m in the numerics to distinguish
it from the Vm in the continuum model and the V̌m in the
pure 1D model. The Fermi momentum is determined from
kF = 1

a arccos( −μ−2t
2t ), where a is the lattice spacing, t is the

hopping integral, and μ is the chemical potential. Alterna-
tively, as visualized in Fig. 4(b), the continuum model shows
that for the ferromagnetic chain the gap closes for Cm = �̃1/2

at exactly kx = kF . Figure 4(f) shows the corresponding sce-
nario for the coupling strength V̂m = (4t�)1/2, and if we use
the touching point k1 as a different definition of kF , we find
indeed confirmation of the same value, which provides in
addition a good test of the appropriateness of the numerical
solution.

We note furthermore that the k1 closing point evolves
smoothly to kx = 0 by tuning the spiral wave vector km from
0 to kF in both the numerics and the continuum model. Inter-
estingly, apart from kF this result appears to be independent
of the chemical potential μ so long as one remains within the
bandwidth. The k0 gap closure displays the expected � de-
pendence, V̂m ∝ [1 + (�/E )2]1/4, where E is an empirically
determined energy scale on the order of EF depending on the

system parameters, replacing the dependence on the density
of states ρ in the continuum model. Note that V̂m and kFVm

have units of energy.
In Appendix D we additionally demonstrate that this strong

agreement is largely unchanged if the gap is kept constant
over the entire system rather than being self-consistently de-
termined. This change requires only a slight rescaling of the
V̂m values at which the various gap closings occur. For sys-
tematic investigations of the dependence on V̂m and km the
non-self-consistent computation has the advantage that the
bulk properties can be kept identical throughout the compu-
tations allowing thus for comparison, and we will use it for
this purpose. Through the tests in Appendix D we have the
confirmation that the results remain quantitative.

V. SPIRAL-ORDERED INTERFACE:
SUBGAP BAND STRUCTURE

The analysis of the ferromagnetic interface has demon-
strated that the subgap physics does not arise from the
hybridization of YSR states alone but also contains a signifi-
cant contribution from a dimensionally renormalized Zeeman
shifted background. The latter dominates the subgap bands
for kx ∼ kF . For spiral-ordered interfaces the requirement of
going beyond a pure YSR hybridization is even more pro-
nounced, and the breakdown of the latter is pushed from kx ∼
kF to kx ∼ kF − km (we assume kx, km > 0 in the following
discussion). Consequently, at the most topologically interest-
ing regime of km → kF the contribution due to YSR physics
alone becomes entirely irrelevant, and the understanding of
the subgap band structure requires the full inclusion of the
substrate effects.

To capture the full subgap physics, we consider again
det T −1 = 0 with the full solution of the Green’s function
given in Eq. (7). In comparison with the ferromagnetic case
the solution for the subgap bands is considerably more com-
plicated. Indeed det T −1 corresponds to a polynomial of order
16 in ω, without any evident symmetry that can be used
to reduce it to a simpler form as for km = 0. It is, how-
ever, straightforward to investigate the solutions numerically.
Appendix B contains a discussion of the required analysis.
This provides us with a handle to track how the features of the
ferromagnetic interface continuously evolve as a function of
the spiral winding km, as shown in Fig. 4. In all cases, again
only two bands contribute to the subgap energies.

Extending the interpretation that the subgap states present
in the LWA are those due to a hybridized band of YSR states,
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[ [

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 4. Exact subgap bands from the 2D analytic model [(a)–(d)] and self-consistent numerical solution as described in Appendix D
[(e)–(h)] for the scattering strengths V̂m and Cm = πρVm/kF as indicated in the plots. Notice that V̂m and VmkF have units of energy. There is
excellent agreement between the numeric and analytic results. The scattering strengths are chosen such that plots within a column correspond
mutually to the same conditions and the spiral wave vector km tunes from 0 to 1.05kF as the curves darken. We show the full Brillouin zone for
the numerical data to demonstrate that there are no further subgap features. The parameters used are as follows: �̃ = 0.1 for the continuum
model [(a)–(d)] and � = 0.1, t = 1, a = 1, Ny = 70, and Nx = 450 for the numerics [(e)–(h)]. The shown behavior is independent of the value
of �. In (e)–(h) we have self-consistently adjusted the pairing potential V̂p and the chemical potential to obtain the selected � far away from
the magnetic scatterers and identified kF by comparison with the gap closure at kF in (b). The energy E in (h) is an empirically found scale on
the order of EF such that the features reproduce the behavior of (d).

the reducing range of validity of the LWA suggests that YSR
physics becomes irrelevant as km → kF . In Fig. 5 we provide
a systematic comparison of the exact subgap band structure
with the LWA as a function of winding km and interaction
strength Cm. The difference between LWA and exact results
becomes particularly striking for |km| � kF , at which the LWA
Shiba bands would predict the absence of any subgap states
but the Zeeman contribution from the exact solution pro-
vides a gap closure with Dirac-type bands at the time-reversal
symmetric momentum kx = 0 (in the gauge transformed
basis).

This closure occurs at Cm = �̃1/2 for the ferromagnetic
chain km = 0 and at

C�
m = [(1 − (km/kF )2)2 + �̃2]1/4 (19)

for general km as can be verified by direct substitution into
Eq. (B1). For increasing Cm this gap reopens as shown in
Figs. 5(j)–5(l). In addition, when tuning the spiral wave vector
km from 0 to kF [through Figs. 5(b), 5(f), and 5(j), for exam-
ple], the closed gap at k1 > kF first opens and splits into two
band minima, associated with the features at k0 and k1 as a re-
sult of the spin-orbit-interaction-like energy scale introduced
by km �= 0. The minimum at k1 then quickly rises into the
continuum, while the minimum at k0 evolves smoothly into
the Dirac-type band at km = kF .

In Figs. 5(a)–5(d) we reproduce Fig. 2 for comparison.
Figures 5(e)–5(h) display the restricted region of validity for
the LWA if km �= 0. Notice, in particular, that the LWA falsely
suggests a gap closure at nonzero kx whereas the exact solu-
tion shows instead a minimum. For km > kF there is naturally
a physical difficulty in forming subgap states due to the sepa-
ration of spin-up and spin-down Fermi surfaces. Nonetheless,

it is interesting to note that the closure at kx = 0 given by
Eq. (19) persists in this limit and is plotted in Fig. 5(p).

Thus using the exact Green’s function becomes increas-
ingly important as km → kF and essential for km � kF as it
is able to capture the crossover from YSR physics describing
the gap closure at kx = 0 to the underlying, renormalized
Zeeman shifted bands becoming dominant. This transition is
most clear through Figs. 5(d), 5(h), 5(k), and 5(p), where Cm

has been tuned to C�
m according to Eq. (19) in all cases. For

a spiral-ordered magnetic interface with km �= 0 the LWA and
thus YSR physics are further restricted to |kx| < kF − |km|,
and at this upper limit its subgap bands always join the con-
tinuum. In these limits the states governing the subgap physics
are largely unrelated to YSR physics.

VI. CONCLUSIONS

The main result of this paper is the demonstration that
the subgap structure building up at dense magnetic impu-
rity chains on a superconductor requires a careful treatment
of the dimensionality and an inclusion of all wavelengths.
Neglecting either leads to erroneous predictions in the form
of an incomplete or even incorrect subgap band structure or
incorrect dimensional renormalization of critical interaction
strengths for gap closings. We provided an extended anal-
ysis of these features, mainly through the analytic solution
of a continuum model, but also entirely supported by the
comparison with numerical results from a tight binding cal-
culation. We showed, in particular, that the band structure
results from a mixture of the hybridization of YSR states and
a dimensionally renormalized Zeeman splitting. The latter is
missed by a pure focus on the hybridization of YSR states [the
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FIG. 5. (a)–(p) Comparison between the exact and long wavelength approximation (LWA) results of the subgap bands, extending the
comparison at spiral wave vector km = 0 to km �= 0. (a)–(d) reproduce Fig. 2. Along the horizontal we plot the interaction strengths Cm,1 =
1
2 �̃1/2, Cm,2 = �̃1/2, Cm,3 = 0.45(1 + �̃2)1/4, and Cm,4 = [(1 − (km/kF )2)2 + �̃2]1/4 ordered such that Cm increases from left to right. Along
the vertical we increase the value of km. LWA solutions exist only in the shrinking region of kx � kF − km, and notably for km � kF [(i)–(p)] the
LWA does not predict any subgap bands, in contrast to the exact calculation. Dirac-like closing points exist at kx = 0 for all km at interaction
strength Cm,4 [(d), (h), (k), and (p)]. Thus the gap closure in (k) and (p) must be of a different physical origin from that of the gap closure in
(d) and (h) due to the failure of the LWA in the former, and its magnetic origin is discussed in the text. Note that (j) and (k) are identical as
Cm,2 = Cm,4 if km = kF and that (k) and (l) are ordered differently from other rows because Cm,3 > Cm,4 (there can be no intermediate value
because Cm,2 = Cm,4). We have chosen �̃ = 0.1, but different values make no qualitative difference.

long wavelength approximation (LWA)] but is crucial for the
correct band structure at large momenta, particularly in the
limit km ∼ kF where YSR physics appears irrelevant.

By starting from the dense chain limit we could thus con-
firm that the indicators of additional features anticipated from
extensions of the original tight binding formulation of the
YSR hybridizations [30,65–67] become indeed pertinent the
closer the impurities are packed, and could provide a further
tool to analyze recent experimental results [31,32]. The dense
limit has the further advantage that the resulting formulas
are compact and explicit, and through the computation of
the Green’s function in Eq. (12) we offer a quantity that
allows for the further characterization of all single-particle
properties.

This exact result allows us to fully characterize the subgap
band structure, in particular, the gap closures at various scat-
tering strengths Vm and spiral wave numbers km, together with
their dimensional renormalization. Table I shows the most
significant results in comparison with the pure 1D system.

Such gap closures are relevant especially for topological phase
transitions; yet we outlined that obtaining a relevant Hamilto-
nian for the topological description is not straightforward and
requires a further in-depth discussion. To underline the split
between the general results and their application to topology,
we undertake this discussion of topological properties in a
separate paper, Part II [61] of this work.

The work presented in this paper is theoretical. No data
were produced, and supporting research data are not required.
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APPENDIX A: FOURIER TRANSFORM
OF GREEN’S FUNCTION

The Fourier transform from g(ω, kx, ky) to g(ω, kx, y) con-
sidered in Sec. II requires the solution of the integral

g(ω, kx, y) =
∑

σ

∫ ∞

−∞

dky

2π
eiyky

τσ
0 ω+ + τσ

z εkσ + στσ
x �

ω2+ − ε2
kσ − �2

.

(A1)

Since the integrand is unchanged under ky → −ky, the sign
of y does not matter, and we can replace the exponential
by ei|y|ky . Going then to dimensionless variables k̃y = ky/kF ,
ω̃ = ω/EF , and �̃ = �/EF for EF = k2

F /2m, and using the
quadratic dispersion relation, the integral becomes

g(ω, kx, y) = − kF

EF

∑
σ

∫ ∞

−∞

dk̃y

2π
ei|y|kF k̃y

× τσ
0 ω̃+ + τσ

z

(
κ2

σ + k̃2
y − 1

) + στσ
x �̃(

κ2
σ + k̃2

y − 1
)2 − ω̃2+ + �̃2

, (A2)

with κσ = (kx + σkm)/kF . The integrand has four poles lo-
cated at k̃y = ±1 pσ,±2 for independent signs ±1 and ±2, with

pσ,± = [
1 − κ2

σ ± (ω̃2 − �̃2 + iη)1/2
]1/2

. (A3)

Notice that we have replaced ω2
+ = ω2 + iη sgn(ω) by ω2 +

iη to avoid having to choose below different signs ±2 for
ω > 0 and ω < 0. The contour is closed in the complex upper
half plane and picks up the poles at +pσ,+ and −pσ,−, which
yields

g(ω, kx, y)

= −i
kF

2EF

∑
σ

1

p2
σ,+ − p2

σ,−

×
[

ei|y|kF pσ,+
τσ

0 ω̃+ + τσ
z

(
κ2

σ + p2
σ,+ − 1

) + στσ
x �̃

pσ,+

+ e−i|y|kF pσ,−
τσ

0 ω̃+ + τσ
z

(
κ2

σ + p2
σ,+ − 1

) + στσ
x �̃

pσ,−

]
.

(A4)

With p2
σ,+ − p2

σ,− = 2
√

ω̃2 − �̃2 + iη and kF /EF = 2πρ/kF

for ρ = m/π this leads to Eq. (7).

APPENDIX B: DETERMINATION OF THE SUBGAP BANDS

The subgap bands are determined through det T −1 = 0,
which for the general spiral case can be given the form

(�̃2 − ω̃2)
(
S+S− + C4

m

) − C2
m

√
(E− − S−)(E+ − S+)

× [(E− + S−)(E+ + S+) + �̃2 + ω̃2] = 0, (B1)

where E± = (kx ± km)2/k2
F − 1, S± =

√
(E±)2 + �̃2 − ω̃2.

After rearrangements and squaring to eliminate the square
root this equation corresponds to a polynomial of order 16 in
ω. For general km there are no apparent symmetries that can
be exploited except for the built-in particle-hole symmetry.

For the special ferromagnetic case (km = 0), however, sub-
stantial simplifications can be obtained. Equation (B1) can be

brought to the form

(�̃2 − ω̃2)(ω̃6 − β4ω̃
4 + β2ω̃

2 − β0) = 0, (B2)

with the coefficients

β4 = 2
(
E − C2

m

)2 + 3�̃2, (B3)

β2 = (
E − C2

m

)4 + 4�̃2
(
E2 − EC2

m + C4
m

) + 3�̃4, (B4)

β0 = �̃2(E2 − C4
m + �̃2)2

, (B5)

for E = k2
x /k2

F − 1. Since Eq. (B2) is a third-order polynomial
in ω̃2, it is readily solved. The solutions are given by

ω̃ = ±
√

−(b + ζ qγ + δ0/ζ qγ )/3, (B6)

where γ = [(δ1 +
√

δ2
1 − 4δ3

0 )/2]1/3, δ0 = b2 − 3c,

δ1 = 2b3 − 9bc + 27d , with b = −2(E − C2
m)2 − 3�̃2,

c = 4�̃2(−C2
mE + E2 + C4

m) + (E − C2
m)4 + 3�̃4, and

d = −�̃2(−C4
m + �̃2 + E2)2, and where ζ q = eiq2π/3 =

[ 1
2 (

√
3i − 1)]q are the third roots of unity for q = 0, 1, 2.

Only for q = 0 is the solution always real and can it lie below
the gap. This provides the pair of particle-hole symmetric
subgap bands reported in Eq. (14). The additional solutions at
q = 1, 2 lie always above the gap. All solutions are plotted in
Fig. 6.

We note that the q = 1, 2 solutions can be seen to make up
the underlying electronic band structure in Fig. 6(a), which,
at larger interactions strengths, combines with the solution
plotted in Fig. 2 to make bands similar to those expected of
Zeeman shifted electronic bands. We have plotted only places
where the exact solutions are purely real but note that there
are also complex resonances above the gap. These follow the
rest of the expected electronic band displayed in the Cm = 0
limit in Fig. 6(a).

For the general spiral case (km �= 0) a reduction to a simpler
form as for the ferromagnetic case could not be made, and
one has to deal with the polynomial of order 16. Lengthy but
explicit solutions are nonetheless obtainable with the help of
standard computer algebra software, and similar to the analy-
sis shown in Fig. 6. It is straightforward to identify the relevant
subgap bands, leading to the solutions presented in Figs. 4
and 5. As for km = 0 there is only one pair of particle-hole
symmetric bands within the gap.

APPENDIX C: GREEN’S FUNCTION IN THE LONG
WAVELENGTH APPROXIMATION

The long wavelength approximation (LWA) relies on a
replacement of the momentum ky integration by an energy
integration under the assumption that the partial density, ob-
tained by the variation of the dispersion in the ky direction,
is directly proportional to the total density of states. The
underlying assumptions and limitations are discussed in detail
in Sec. III A. This approximation is widely used for the com-
putation of Green’s functions in superconductors [3,71–73],
and for completeness we provide here a full derivation which
also shows formally where the LWA becomes invalid.

Instead of the direct computation of the ky integral the LWA
relies on replacing the partial Fourier transform by an energy
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FIG. 6. Illustration of the bands obtained from Eq. (B6) for a ferromagnetic interface (km = 0). (a)–(f) show the results for the different
interaction strengths Cm indicated in the plots. Shown are only the real solutions, as solid black, red, and blue curves for the solutions q = 0, 1, 2
of the cubic equation, respectively. The dashed curves show the dispersion of the bulk superconductor for comparison, Ek = EF [(k2

x /k2
F − 1)2 +

�̃2]1/2. Note that all bands are real where |ω| � Ek . Complex branches split off at the endpoints of the lines of different q. We have chosen
�̃ = 0.1 here, but a different value makes no qualitative difference.

integral. For general shifted coordinates kx → kx + σkm this
takes the form

g(ω, kx, y) =
∑

σ

∫
dky

2π
eiyky

ω+τσ
0 + εkσ τ σ

z + �στσ
x

ω2+ − �2 − ε2
kσ

=
∑

σ

∫
dε

ω+τσ
0 + ετσ

z + �στσ
x

ω2+ − �2 − ε2
Nσ (kx, y, ε),

(C1)

with

Nσ (kx, y, ε) =
∫

dky

2π
ei|y|kyδ(ε − εkσ ). (C2)

Note that we replaced y → |y| because the integral is in-
variant under the change ky → −ky. With εkσ = EF (κ2

σ +
(ky/kF )2 − 1) for κσ = (kx + σkm)/kF we see that the ar-
gument of the delta function vanishes at ky = ±qσ =
±kF

√
(ε/EF ) + 1 − κ2

σ . Consequently, we have

Nσ (kx, y, ε) = ei|y|qσ + e−i|y|qσ

2π

∣∣∣ dεkσ

dky

∣∣∣
εkσ =ε

= ei|y|qσ + e−i|y|qσ

4πEF qσ /k2
F

. (C3)

In the LWA the low energy approximation is captured by
expanding qσ ≈ kF

√
1 − κ2

σ + kF ε/2EF
√

1 − κσ . This linear
ε dependence is kept in the exponentials, where we write
qσ (ε) as a shorthand, but with the underlying wide-band-type
assumption the ε dependence is neglected in the density of
states. The LWA is therefore

Nσ (kx, y, ε) ≈ ei|y|qσ (ε) + e−i|y|qσ (ε)

4πEF

√
1 − κ2

σ /kF

. (C4)

It is important to note here that with the approximation we
have changed the analytic behavior of Nσ (kx, y, ε). Instead
of having branch cuts arising from the square roots it is

now a fully analytic function in ε. As a consequence the
Fourier transformation of Eq. (C1) picks up the poles from
the denominator, which is the same as for the full 2D Fourier
transformation (kx + σkm, ky) → (x, y), but misses the contri-
bution from the branch cuts which may be interpreted roughly
as further quantum fluctuations due to the restriction to a
sharp kx + σkm value. As shown in the main text, however,
this missing contribution turns out to have substantial conse-
quences.

The Fourier integral in Eq. (C1) then has poles at

ε± = ±
√

ω2 − �2 + iη, (C5)

where similar to Appendix A we replace ω2
+ = ω2 +

iη sgn(ω) by ω2 + iη. This has no influence if ω2 − �2 > 0
but allows us to absorb the further sgn(ω) in front of the square
root for ω2 − �2 < 0 by redefining the sign of ε±. With the
choice of Eq. (C5) we make sure that ε+ lies always in the
upper half plane. For the exponential depending on +qσ (ε)
the contour needs to be closed in the upper half plane, and for
the exponential depending on −qσ (ε) it needs to be closed in
the lower half plane. This results in

g(ω, kx, y) = −2π ikF

4πEF

√
1 − κ2

σ

∑
σ

×
[
ω+τσ

0 + ε+τσ
z + �στσ

x

2ε+
ei|y|qσ (ε+ )

− ω+τσ
0 + ε−τσ

z + �στσ
x

2ε−
e−i|y|qσ (ε− )

]
, (C6)
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which is rewritten as

g(ω, kx, y) =
∑

σ

−iπρei|y|/ξσ (ω,kx )

kF

√
1 − κ2

σ

√
ω2 − �2 + iη

× [(
ω+τσ

0 + �στσ
x

)
cos

(
ykF

√
1 − κ2

σ

)

+ i
√

ω2 − �2 + iητσ
z sin

(|y|kF

√
1 − κ2

σ

)]
,

(C7)

using EF /kF = kF /2πρ (for ρ = m/π ) and

ξσ (ω, kx ) = (2EF /kF )
√

1 − κ2
σ /

√
ω2 − �2 + iη. (C8)

For |ω| > � the ξσ (ω, kx )-dependent factor provides only a
small correction to the oscillations and can be neglected. For
|ω| < �, however, it causes the necessary exponential decay
of the Green’s function, e−|y/ξσ (ω,kx )|.

For ferromagnetic chains we can set km = 0 and obtain

g(ω, kx, y) = −2iπρeπρi|y|
√

ω2−�2+iη/p

p
√

ω2 − �2 + iη

× [(ω+τ0σ0 + �τxσz ) cos(yp)

+ i
√

ω2 − �2 + iη τzσ0 sin(|y|p)], (C9)

with p =
√

k2
F − k2

x , which is the result reported in Eq. (16) of
the main text.

APPENDIX D: SUBGAP BANDS FROM
SELF-CONSISTENT NUMERICS

For the numerical simulation we use a single-band tight
binding model on a 2D square lattice of lattice constant a
described by the Hamiltonian

H = −
∑

〈i, j〉,σ
tc†

i,σ c j,σ −
∑
i,σ

μc†
i,σ ci,σ

+
∑

i

[�ici,↓ci,↑ + H.c.], (D1)

where i, j label the lattice sites and σ =↑,↓ are the spin
projections. The kinetic energy is described by the hopping
between nearest-neighbor sites, denoted by 〈i, j〉 in the sum-
mation, with hopping integral t and chemical potential μ.
To keep the model assumptions at the necessary minimum,
we will consider an on-site singlet pairing only, but exten-
sions to allow for triplet pairing have shown no significant
difference (triplet pairing amplitudes are generated in any
case from the magnetic scattering but have only little in-
fluence on the Hamiltonian). The gap function is given by
�i = −V̂p〈0|ci,↑ci,↓|0〉, where |0〉 is the BCS ground state and
V̂p is the interaction potential strength.

The interaction with the magnetic impurities is given by
the Hamiltonian

Hm = V̂m

∑
i=(ix,iy=0)

Mi · Si, (D2)

where V̂m is the interaction strength, Mi are unit vectors that
are either ferromagnetically aligned or twisted into a spiral,

and Si = ∑
σ,σ ′,n σσ,σ ′c†

i,n,σ ci,n,σ ′ is the electron spin operator,
with σ = (σx, σy, σz ) being the vector of Pauli matrices. We
use a 2D lattice of dimensions Nx × Ny with periodic bound-
ary conditions in both directions. The lattice sites are labeled
by i = (ix, iy).

Since the chains are infinite along the x direction, we
obtain a partial diagonalization by performing the Fourier
transform on ix. For the ferromagnetic case the translational
symmetry along the x direction allows us to make the Fourier
transformation just as ix → kx. For spiral Mi with winding
wave number km we choose the spin axes such that Mi ro-
tates in the spin-(x, y) plane, which allows us to treat the
impurity scattering as a ferromagnetic interface by letting
kx → kx ± km as for the continuum model [see Eq. (3)]. The
periodic boundary conditions along x are always applied to
the gauge transformed basis and lead just to the standard
quantization of the kx, connecting smoothly to the infinite
system for Nx → ∞. All kx dependence shown in the figures
throughout this paper is with respect to this shifted momentum
basis.

The translational symmetry is broken along the y direction
by the line of impurity scatterers, which we place at the
center position iy = 0. The system size is chosen to be large
enough to suppress any influence of the periodicity along the y
direction, and due to the partial diagonalization we can choose
large Nx. The pairing amplitude becomes only dependent on
iy, and we write �iy .

The self-consistent solutions are obtained by a fixed-point
iteration. We choose arbitrary initial values for �iy , diag-
onalize the Hamiltonian, and compute new �iy from the
resulting eigenstates. This procedure is repeated until con-
vergence, and a relative error of 10−4 is typically obtained
after 10–20 iterations. A stop of convergence at a larger error
should usually be avoided since even an error of 10−2 is often
not enough to ensure the correctness of the solution. In the
self-consistent solution, �iy is reduced in the vicinity of the
magnetic scatterers. To probe the influence of this nonuni-
formity on the subgap features, we also compare it with a
non-self-consistent solution, obtained by imposing a uniform
� (corresponding to the self-consistent result far from the
interface) and diagonalizing the Hamiltonian only once. This
comparison is shown in Fig. 7, with the non-self-consistent re-
sults in Figs. 7(a)–7(d) and the corresponding self-consistent
results in Figs. 7(e)–7(h). Differences compared with the
fully self-consistent solution appear only near the edges of
the bulk gap. This allows us to use the non-self-consistent
computation for systematic comparisons of mainly the topo-
logically relevant features at ω = 0, for which a comparison
is only meaningful if the bulk value �iy remains always the
same, which cannot be guaranteed from the self-consistent
computation.

Unless otherwise stated the parameters used are t = 1,
a = 1 (setting the unit of energy and length), and a bulk
gap � = 0.1t setting the value of �iy far away from the
magnetic scatterers, ensured by appropriate adjustment of V̂p.
The system sizes are Nx = 450 and Ny = 70. For non-self-
consistently determined numerics we set μ = −3.6t . For the
self-consistent numerics we fix instead the band filling to a
value corresponding to this μ in the normal state and then
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FIG. 7. Subgap bands determined from non-self-consistent [(a)–(d)] and self-consistent numerical solution [(e)–(h)] for the scattering
strengths V̂m as indicated in the plots. The scattering strengths are chosen such that plots within a column correspond mutually to the same
conditions and the spiral wave vector km tunes from 0 to 1.05kF as the curves darken. In (e)–(h) we have self-consistently adjusted the pairing
potential V̂p to obtain the selected � far away from the magnetic scatterers and identify kF by comparison with the gap closure at kF in (b).
The absence of self-consistency causes mainly small differences in the states near the gap edges. In (d) and (h) we observed furthermore
that the tight binding model causes a slight modification of the density of states required to connect � and V̂m to the dimensionless � and
Cm. While there is an exact correspondence between Cm = �̃1/2 and V̂m = (4t�)1/2, the strength Cm = (1 + �̃2)1/4 in (d) and (h) corresponds
to V̂m = E ′[1 + (�/E )2]1/4, with E and E ′ being parameters on the order of t determined by the condition that the gap closes at kx = 0 for
km = 0. In all plots we show the full Brillouin zone to demonstrate that there are no further subgap features. The parameters used are � = 0.1t ,
Ny = 70, and Nx = 450. For the non-self-consistent results we have chosen μ = −3.6t , whereas for the self-consistent plots we have fixed a
doping corresponding to this μ but allowed μ to adjust self-consistently then to further test the independence of the curves from the imposed
external constraints.

adjust μ self-consistently by comparison of the actual density
with the imposed filling. In this way we always compare sys-

tems with the same number of particles, although this choice
does not have any impact on the results.
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