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Decoupled heat and charge rectification as a many-body effect in quantum wires
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We show that for a quantum wire with a local asymmetric scattering potential the principal channels for charge
and heat rectification decouple and renormalize differently under electron interactions, with heat rectification
generally being more relevant. The polarization of the rectification results from quantum interference and is
tunable through external gating. Furthermore, for spin-polarized or helical electrons and sufficiently strong
interactions a regime can be obtained in which heat transport is strongly rectified but charge rectification is
very weak.
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I. INTRODUCTION

Electronic technology relies significantly on the progres-
sive miniaturization of its components. This has started
reaching into the quantum regime. It is thus natural to ask if
genuine quantum effects can help to define new functionality,
even if quantum computing itself is not targeted. This ques-
tion is especially interesting when interactions are included,
as indeed the latter become pertinent with the confinement
of charges caused by the miniaturization. Many-body cor-
relations in particular can offer the opportunity to design
properties not achievable through conventional electronics. In
this paper we present such an example in which interactions
are tuned to decouple charge and heat rectification.

Rectification, the diode effect, is characterized by an asym-
metric current-voltage relation. In a conventional diode this
asymmetry is introduced by p- and n-type doped sides of
a semiconductor junction. Although the dopants create an
electrostatic environment, the resulting physics is understood
on the single-electron level. A many-body variant exists but
relies on different physics. It was shown long ago that in quan-
tum wires, as illustrated in Fig. 1, a local scattering potential
U (x) causes a strong renormalization of the current-voltage
relation through electron interactions [1,2]. While the leading
correction is independent of the potential’s form, subleading
orders are shape sensitive, and a spatially asymmetric poten-
tial induces rectification [3–5], which for strong interactions
can become very large.

In this paper we investigate this scenario under the aspect
of thermoelectric rectification where heat current is driven by
a voltage V . In the nonlinear regime this is different from a
temperature-driven current, which we do not consider. The
thermoelectric response in quantum wires has been consid-
ered in various settings [6–12], but for rectification our focus
is entirely on the heat flow from backscattering. The many-
body setup is also different from the usual approaches to heat
rectification that depend on an artful design of the system
or the reservoirs [13–33]. With the tools of open quantum
systems and quantum thermodynamics we derive an intu-

itive result that automatically incorporates the requirement
of gauge invariance [26,27,34,35] and evaluate it through
nonequilibrium perturbation theory. Remarkably, the asym-
metry of the heat current appears already at the leading current
renormalization such that through interactions it decouples
from charge rectification and generally dominates.

In addition to normal electrons we consider effectively
spinless (e.g., polarized or helical) conductors. For the lat-
ter we find that for strong interactions the heat asymmetry
can become as large as the heat current itself, whereas the
charge asymmetry remains very small. This produces the phe-
nomenon of a conductor that acts as a heat diode but not
as a charge diode. Furthermore, whether the heat transport
is reduced for positive or negative bias depends on quantum
interference and can be switched even through small changes
in the impurity potential which can be created through local
external gates.

The plan of the paper is the following: In Sec. II we discuss
the physics underlying the heat rectification. The model is
introduced in Sec. III and quantitatively analyzed for noninter-
acting electrons in Sec. IV. The modifications from interacting
electrons are the topic of Sec. V, in which we also high-
light how renormalization effects cause a decoupling from
charge rectification. Rectification efficiencies are investigated
in Sec. VI, before we conclude in Sec. VII. The evaluation
of the required correlation functions relies on standard tech-
niques for one-dimensional conductors, and a summary of the
used bosonization details is provided in the Appendix.

II. PHYSICS BEHIND RECTIFICATION

For a setup as in Fig. 1 the asymmetry causing rectification
is due to the local potential U (x) alone. In an interacting
system backscattering on U , described by Fourier modes U2kF ,
with kF being the Fermi momentum, causes a strong renor-
malization of transport [1,2]. But the usual leading correction,
proportional to |U2kF |2, does not retain spatial information
and does not contribute to rectification. A spatial asymmetry
dependence, which then causes rectification, appears only at
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FIG. 1. (a) Scheme of the voltage V driven quantum wire with a
spatially asymmetric potential U (x). Rectification arises from dress-
ing U (x) by backscattered charges together with renormalization
through interactions. (b) The wire as a thermodynamic system with
right (left) moving modes R (L) in equilibrium with the reservoir
on their left (right). The reservoirs are fully absorbing for incoming
particles. Backscattering by U (x) (curved arrows) connects the R and
L subsystems and causes the transport asymmetry under V .

subleading orders with higher powers of U in the renormal-
ization [3,4], but for strong interactions they can grow in
magnitude and, indeed, create a pronounced diode effect.

In contrast for energy or heat currents the dependence
on the asymmetry of U (x) appears remarkably already at
leading order. The potential U (x) contains two contributions,
backscattering and forward scattering. The latter does not
affect charge transport but changes locally the kinetic energy
of the particles. This is conventionally captured by a local
chemical potential μ(x) = μ + U (x), which modifies the lo-
cal energy density and enters linearly in the energy transfer
by backscattering which remains proportional to U 2. We will
show that the overall amplitude is (U � U )2kF U ∗

2kF
, with the

star (�) being the convolution of the Fourier modes. This
amplitude is complex and through its phase retains the sig-
nature of the spatial asymmetry, thus taking the role occurring
only at higher orders for charge rectification. Intuitively, this
process should be understood as the electrons picking up a
phase due to the locally modified density just before or after
backscattering. This phase is different for counterflowing par-
ticles due to the asymmetry of U (x). Since the backscattering
process is local, it convolves this phase of the incoming wave
packets with the phase from the backscattering potential to the
final momentum transfer 2kF required to change the direction
of propagation of wave packets. The phases of the complex
amplitudes are thus the result of the interference of the in-
coming with the outgoing wave packets and are sensitive to
the precise shape of U (x). Due to the nonlocal nature of the
Fourier transformation there is no intuitive way to anticipate
the precise acquired phases, but in Sec. IV and Fig. 2 we
provide a concrete example illustrating how external gating
can influence the interference to one’s advantage.

The dependence of charge and heat current rectification
causes, then, a decoupling of the corresponding renormaliza-
tion channels in an interacting system. This leads to different
voltage V dependences in the form of different power-law
scalings. Since heat rectification arises at the most relevant
order, it usually dominates over charge rectification, and in-
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FIG. 2. Sensitivity of sin(α) in Eq. (9) to the shape of U (x), given
here by the sum of two Lorentzians, as indicated in the figure with
parameters δx = 2x0 and kF = 0.4/x0 in generic units x0, u1. The
inset shows U (x) for the ratios u2/u1 marked by the circle (solid line)
and square (dashed line).

teractions can even be tuned such that heat rectification is
strongly enhanced while charge rectification remains very
small, both relative to their total currents. Such a device then
operates as a good thermal diode without significant impact
on charge rectification.

III. MODEL AND CURRENTS

For a quantitative evaluation we consider a one-
dimensional quantum wire connected to reservoirs on each
end. For voltage V driven thermoelectric transport the reser-
voirs do not have any specific form, and their temperature is
irrelevant as long as V sets the dominant energy scale. The
physics of a one-dimensional conductor is very susceptible
to electron interactions, and the conventional Fermi liquid
paradigm is generically replaced by the universality class of
the Luttinger liquid [36]. The latter is characterized by collec-
tive charge and spin density modes which, in part, drastically
change the shape of correlation functions in comparison with
the Fermi liquid, and we will make use of this behavior, in par-
ticular the property that charge and heat rectification currents
are differently renormalized. Since this physics is universal,
it can conveniently be accessed through an appropriately cho-
sen model. We therefore describe the system in terms of the
Tomonaga-Luttinger model [37–40] in which electron opera-
tors ψ (x) are split into right (R) and left (L) moving modes
with momenta close to +kF and −kF . With ψR,L (x) being the
corresponding field operators, the Hamiltonian without U (x)
becomes

H =
∫

dx
∑

ν

ψ†
ν (x)(μν − νih̄vF ∂x )ψν (x)

+
∫

dxdyV (x − y)ψ†(x)ψ†(y)ψ (y)ψ (x), (1)

where ν = R, L = +,−, the integration is over the wire
length, vF is the Fermi velocity for the linearized dispersion,
and V (x − y) is the (screened) electron interaction. Spin is not
written since all terms are spin diagonal, but its influence is
discussed later. As shown in Fig. 1(a), the R and L movers
have chemical potentials μR,L that are set by the emitting
reservoirs [3–6,41,42]. The voltage drop is V = (μR − μL )/e,
with e being the electron charge. For μR �= μL the Fermi
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momentum is adjusted to kR,L
F = kF + (μR,L − μ0)/h̄vF , with

μ0 being the equilibrium chemical potential. The field opera-
tor is ψ (x) = eikR

F xψR(x) + e−ikL
F xψL(x). Without interactions

the Hamiltonian decouples into R and L moving fermionic
modes, providing the condition shown in Fig. 1(b). Such a
decoupling persists even with interactions if π/kF is not com-
mensurate with the crystal lattice, and we exclude the latter
special cases. The low-energy eigenmodes become, then, col-
lective density wave excitations that still are separate R and
L movers, albeit both mixing the original R and L movers
[39,40]. An appropriate proof of this decoupling can be given
through the bosonization technique, which allows us, in ad-
dition, to evaluate all required correlators explicitly. This is
a standard calculation which we use as a tool to supplement
the results, but it is not of primary importance for the dis-
cussion otherwise. We therefore relegate the details to the
Appendix and in the main discussion focus entirely on the
resulting physics and its interpretation. Through the decou-
pling of modes we can thus always write H = HL + HR, with
Hν containing only ν moving eigenmodes. Scattering on U (x)
has the Hamiltonian

HU =
∫

dx
∑
ν,ν ′

U (x)e−i(νkν
F −ν ′kν′

F )xψ†
ν (x)ψν ′ (x), (2)

where U (x) is nonzero only in a small region < π/kF around
x = 0 and we assume that it is spatially asymmetric, U (x) �=
U (−x). This potential has two roles. For ν = ν ′ it describes
forward scattering that can be added to Hν by letting μν (x) =
μν + U (x). For ν �= ν ′ the potential introduces backscatter-
ing between R and L movers, and we call this part of the
Hamiltonian Hb. For a helical system (opposite spins bound
to R, L movers) U is a magnetic impurity inducing both spin-
preserving forward and spin-flip backward scattering.

Backscattering is a relevant perturbation for electron trans-
port [1,2], but the leading term, proportional to |U2kF |2, is
asymmetry insensitive. Thus, charge rectification depends on
subleading contributions [3,4], revealed through the rectifi-
cation particle current, Ṅr

ν = Ṅν (V ) + Ṅν (−V ), where Ṅν =
d
dt Nν measures how particle numbers Nν of ν movers change
by backscattering. By particle conservation ṄR = −ṄL.

Identifying heat or energy transfer is a bit more subtle.
We have to consider R and L movers as thermodynamic sub-
systems that are brought into contact through the interface
Hamiltonian Hb [see Fig. 1(b)]. The energy flow into system ν

is given by the change in the internal energy Eν = Trν{Hνρν},
with Trν being the trace over the degrees of freedom of sub-
system ν and ρν being the reduced density matrix obtained
from the full density matrix ρ through ρR,L = TrL,R{ρ}. If we
put all time dependence in ρ and notice that we can write
Eν = Tr{Hνρ} with Tr being the full trace, we obtain

Ėν = − i

h̄
Tr{Hν[H, ρ]} = − i

h̄
Tr{[Hν, Hb]ρ}, (3)

where we have used the von Neumann equation for the time
evolution of ρ, the cyclicity of the trace, and [Hν, Hν ′ ] = 0.
Notice that ĖR = −ĖL, although, formally, they differ by an
interface term ∝ Hb [43]. But in steady state this term has
an expectation value of zero. To identify the heat current
Q̇ν through the interface Hb we separate Ėν into heat and

work fluxes. The criterion for heat flux as the quantity that
changes entropy [43,44] would give Q̇ν = Ėν as Hb mixes
R and L states. But Hb exchanges particles too such that for
the grand-canonical setting μνṄν has to be split off from
the heat flux and we obtain Q̇ν = Ėν − μνṄν . This splitting
reproduces the standard form of the change in thermodynamic
potential dEν = dQν + μνdNν and is, in particular, necessary
because it makes Q̇ν independent of the gauge fixing the origin
of energy [26,27,34,35]. Like for Eq. (3) we obtain

Q̇ν = − i

h̄
Tr{[Hν − μνNν, Hb]ρ}, (4)

and the μνNν term indeed cancels μν in Eq. (1). The latter
equation provides the earlier mentioned intuitive result for the
backscattering-induced heat current.

IV. NONINTERACTING ELECTRONS

Remarkably, heat rectification itself does not need inter-
actions and arises as a clear quantum interference effect.
Focusing on Q̇R and using the fact that the R, L decoupling
of H can be read off from the first line in Eq. (1), the standard
anticommutation relations yield

Q̇R = 1

h̄

∫
dxU (x)ei(kL

F +kR
F )x

× Tr{ψ†
L (x)[U (x) − ih̄vF ∂x]ψR(x)ρ} + c.c. (5)

Although this result is derived for a noninteracting system,
we show in the Appendix that it remains unchanged for an
interacting system. In Eq. (5) as well as in the interacting
case below we can drop the U -independent term as it pro-
duces only a logarithmic correction to the amplitude and
no rectification at the considered orders. Furthermore, the V
dependence of kν

F , in contrast to its role for Ṅr
ν [3,4], just

produces higher powers in V , and we set kR
F + kL

F ≈ 2kF .
The Keldysh nonequilibrium expansion of ρ in U gives, at
leading order,

Q̇R = −i

h̄2

∫
dxdx′U 2(x)U (x′)ei2kF (x−x′ )

∫ 0

−∞
dt

× 〈[ψ†
L (x, 0)ψR(x, 0), ψ†

R(x′, t )ψL(x′, t )]〉 + c.c., (6)

where ψν evolves under Hν and the expectation value is over
the uncoupled R, L systems. Equation (6) describes the in-
terference of an incoming wave packet with its backscattered
counterpart. Due to the different powers U 2(x) and U (x′) and
the spatial asymmetry of U this expression breaks the L-R
symmetry, and thus, the interference patterns are different
for applied ±V voltages. To obtain a quantitative result for
the interference we notice that ψν (x, t ) varies slowly on the
scale π/kF , which is much longer than the support of U (x).
This allows us to set the arguments x, x′ of the field operators
to zero, and the spatial integration then provides the Fourier
transforms Uk of U (x) and (U 2)k = (U � U )k of U 2(x),

Q̇R = −i

h̄2 (U 2)∗2kF
U2kF

∫ 0

−∞
dt

× 〈[ψ†
L (0, 0)ψR(0, 0), ψ†

R(0, t )ψL(0, t )]〉 + c.c. (7)

The gauge transformation ψν (x, t ) = e−iμν t/h̄ψ̃ν (x, t ) sets the
bulk μR,L → 0 but makes the V dependence evident by giving
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rise to ei(μR−μL )t/h̄ = eieV t/h̄ in Eq. (7). If eV is larger than the
thermal energy, we can neglect temperature for the evaluation
of the correlators, which marks a difference from temperature-
driven transport [45]. The time dependence of the remaining
correlators 〈ψ̃†

ν (0, 0)ψ̃ν (0, t )〉 and 〈ψ̃ν (0, 0)ψ̃†
ν (0, t )〉 is then

1/t , set by the cutoff of the energy integration by the Fermi
surface [46]. By going to dimensionless variables y = |eV |t/h̄
we see that Q̇R scales as |V |. This linear response result is
expected since Eq. (7) is identical to ṄR except for the U 2

amplitude instead of U . If we collect all invariant parameters
in the constant C, we obtain

Q̇R = −(U 2)∗2kF
U2kF C|eV |

∫ 0

−∞
dy

i esgn(V )iy

y2
+ c.c. (8)

The divergence at y → 0 in the integral results from the con-
stant density of states in the Tomonoga-Luttinger model and
requires a cutoff by the true bandwidth. This cutoff could, in
principle, produce a further V dependence from the scaling
t → y, but the magnitude of currents is set by V and has to
vanish at V = 0. Therefore, the cutoff must drop out with the
commutators in Eq. (7), and any singularity can be neglected
in the evaluation of the integral. For ṄR the first two factors
in Eq. (8) would be U ∗

2kF
U2kF = |U2kF |2, and the expression in

front of the integral would be real. With the c.c. the integrand
then becomes sgn(V )2 sin(y)/y2 such that ṄR just changes
sign but not magnitude with V → −V . Charge rectification
thus requires higher-order corrections [3,4].

Heat current involves instead (U 2)∗2kF
U2kF . For a real

symmetric potential U (x) = U (−x) the Fourier components
are real, and rectification remains absent. But for a spa-
tially asymmetric potential (U 2)∗2kF

U2kF = |(U 2)2kF U2kF |eiα

is complex with a nonzero phase α. The integrand be-
comes 2[sgn(V ) cos(α) sin(y) + sin(α) cos(y)]/y2. The term
in sin(α) is invariant under the sign of V , showing that heat
current rectification exists even for a noninteracting system.
If we define Q̇r

ν = Q̇ν (V ) + Q̇ν (−V ) as the rectification heat
current measuring the asymmetry between ±V bias, we thus
find that

Q̇r
R = sin(α)|V | |(U 2)2kF U2kF | C′, (9)

where the constant C′ absorbs C and the value of the remain-
ing integration. An identical result holds for Q̇r

L with R → L
and α → −α.

The phase α therefore captures the quantum interference
resulting from Eq. (6) and is thus very sensitive to the precise
shape of U (x), such that, generally, the sign of sin(α) is
arbitrary. But this sensitivity also allows tuning for which only
slight changes in U (x) are required. In Fig. 2 we provide an
example for U (x) being the sum of two Lorentzians and show
that even a change in amplitude by just a few percent can
completely reverse the polarity. This sensitivity is a general
feature of the asymmetry but independent of the shape of U (x)
otherwise. Asymmetric potentials are naturally realized when
impurities appear close together within a Fermi wavelength
[3–5]. Nearby narrow gates could then ensure sufficient tun-
ability. With typical Fermi wavelengths around 100 nm direct
creation by state-of-the-art gates could also be considered.

V. INTERACTING ELECTRONS

Interactions cause a significant renormalization of the
backscattering amplitude and hence of the rectification prop-
erties. This renormalization occurs because backscattering
locally changes the charge density in the vicinity of U (x),
so that an incoming wave packet experiences the combined
effect from the potential U (x) and the interaction with the
displaced charges. This causes a self-consistent dressing of the
potential and, for repulsive scatterers, a strong enhancement
of the effective backscattering amplitude [1,2]. Underlying
this strong response is the fact that in one dimension inter-
actions destabilize the Fermi liquid and cause an instability
towards density fluctuations. The universality class describ-
ing this physics is the Luttinger liquid [36,39,40], and the
bosonization method provides for the latter a standard tech-
nique to compute correlation functions at arbitrary interaction
strength. For the present discussion our focus is on the effect
of the results obtained through this technique, and we provide
thus the necessary details on how to obtain the results in the
Appendix. The correlators in Eq. (7) are then modified from
1/t2 to 1/tγ [39,40], where γ = 2K for the spinless case and
γ = Kc + Ks for the spinful case. The parameters K and Kc,s

capture all interactions. K, Kc = 1 is the noninteracting case,
0 < K, Kc < 1 encodes repulsive interactions, and K, Kc > 1
encodes attractive interactions. For the spinful case, if spin
SU(2) symmetry is preserved, Ks = 1, and if it is broken,
Ks > 1. We exclude Ks < 1 as it would represent an insta-
bility to spin density waves and require specially tuned spin
interactions.

The decoupling into R and L moving eigenmodes persists,
and although the eigenmodes turn into renormalized density
waves, we show in the Appendix that Eq. (7) remains valid.
The evaluation of the correlators shows that they are identical
to those for the backscattering current [1] and change the
voltage dependence in Eq. (9) from |V | to

Q̇r
ν ∼ |V |γ−1. (10)

Since for repulsive interactions γ < 2, this boosts the
rectification current. In comparison charge rectification
Ṅr

ν = Ṅν (V ) + Ṅν (−V ) scales with |V |γc , where γc =
min(2K, 6K − 2) for spinless electrons [3] and γc =
min(Kc + Ks, 4Kc, 3Kc + Ks − 2, 12Kc − 2) for spinful elec-
trons [4]. Heat and charge rectification thus decouple, and
since Q̇r

ν arises from higher relevant contributions, it is usually
more significant.

Notice that these currents are obtained perturbatively on
top of the heat or charge transfer between the reservoirs,
which from standard transport theory are proportional to V .
Particularly interesting is when γ − 1 or γc becomes negative.
Then the current increases when lowering V until at some
V ∗ it becomes as large as the unperturbed current ∝ V . Per-
turbation theory must then be replaced by a strong-coupling
calculation. Since currents must vanish at V = 0, the currents
decrease then again. Near V ∗ backscattering and thus recti-
fication are largest. Since Ks � 1, the spinful case never has
γ < 1, but this can be achieved for spin-polarized electrons
when K < 1/2. If, furthermore, K > 1/3, then charge recti-
fication keeps γc > 0 [3], making the decoupling of heat and
charge rectification most pronounced, with strongly rectified
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FIG. 3. Heat rectification as a function of voltage for U corre-
sponding to the red square in Fig. 2 (with u1/EF = 0.7 and EF setting
the order of the bandwidth). Interactions with γ < 2 enhance the
noninteracting γ = 2. For γ < 1 (possible only for spin polarized
electrons) a maximum enhancement is reached near V = V ∗, where
Eq. (9) crosses over to strong-coupling scaling and Q̇r

R decreases
again to zero (expected trend shown by the dotted line). The inset
shows the corresponding efficiency Q̇r

R/P, with P being the dissi-
pated power. While the scaling is exact, only the order of magnitude
is known for the amplitudes, and we have set C′ = 1.

heat and only weakly asymmetric charge current. Figure 3
shows Q̇r

R for different γ . For γ < 1 we interpolate to the
strong-coupling scaling Q̇r

R ∼ |V |4/γ−1 [1] across V ∗.

VI. RECTIFICATION EFFICIENCY

For a good diode the ratio r = Q̇R(−V )/Q̇R(V ) is either
r � 1 or r 
 1. In the Tomonaga-Luttinger model an exact
calculation of r is tricky due to the required cutoffs. But
Eq. (8) shows that

r = A sin(α) − B cos(α)

A sin(α) + B cos(α)
, (11)

where A and B are of the same order. Therefore, r is tunable
through α to any value. Although its initial value is arbitrary,
this provides the advantage by tuning through gates. In Sec. IV
we indeed highlighted the sensitivity of α to small changes of
gating bias such that the nonuniversality of r can be used to
turn the system into an actively programmable heat diode.

The efficiency of the heat transport is assessed by compar-
ing Q̇r

R to the total dissipated power P = IV (Joule heating).
Since the total current I ∝ V , we obtain Q̇r

R/P ∼ |V |γ−3. For
1 < γ < 2 the divergence at V → 0 indicates that heat rectifi-
cation is most effective when dissipation is generally low. For
γ < 1 there is strong suppression at V < V ∗, and the benefit
of strong rectification near V ∗ involves larger dissipation. This
behavior is illustrated in the inset of Fig. 3. Notice that since
the temperature of the reservoirs does not appear in these
considerations, there is no counterpart of the thermoelectric
figure of merit ZT , and we use Q̇r

R/P instead.

VII. CONCLUSIONS

We have investigated how asymmetric potentials cause
heat current rectification in quantum wires. Although the
effect appears already for noninteracting particles through in-
terference of the backscattered wave packets, it becomes most
interesting in an interacting system. For the latter the charge
and heat rectification decouple and are characterized by a

different voltage dependence. The decoupling becomes more
pronounced with increasing interactions, and in particular for
spin-polarized electrons at interaction strengths 1/3 < K <

1/2, we predict a strong effect in which the heat rectification is
strong but charge rectification remains weak. Such interaction
strengths are not untypical for high-quality conductors. For in-
stance, GaAs quantum wires can be tuned to Kc ∼ 0.4 [47,48]
and are candidates for a helical transition [49] that would
provide the further reduction of the spin degree of freedom.
We have furthermore discussed that the rectification polarity
is easily manipulatable through local gating. The basis of this
is the sensitive dependence of the quantum interference ampli-
tude on the detailed shape of the backscattering potential. This
sensitivity makes the amplitude nonuniversal, which is quite
common for one-dimensional systems, but it makes it thus
also very suitable for an easy tuning of the polarization of the
rectifier. We have indeed shown that changes of a few percent
of the asymmetric shape of the potential can be sufficient
for a full polarization reversal. This can be achieved through
local gating and hence could make such a system useful as a
programmable heat rectifier.

ACKNOWLEDGMENTS

We thank P. Jacquod for a discussion that strongly in-
spired this work, and we thank D. E. Feldman, P. Jacquod,
J. B. Marston, and Z. Zhuang for helpful comments. C.S.
acknowledges the support from the EPSRC under Grant No.
EP/N509759/1. The work presented in this paper is theoreti-
cal. No data were produced, and supporting research data are
not required.

APPENDIX: ENERGY CURRENTS FOR INTERACTING
SYSTEMS IN BOSONIZATION FORMALISM

The analysis of backscattering-induced heat rectification in
the main text relies on the treatment of R and L moving modes
as two distinguishable transport channels. The decoupling of
these two channels appears naturally for noninteracting sys-
tems but becomes more subtle when interactions are involved.
Indeed, the general form of the interaction Hamiltonian

Hint =
∫

dxdyV (x − y)ψ†(x)ψ†(y)ψ (y)ψ (x), (A1)

with ψ (x) = eikR
F xψR(x) + e−ikL

F xψL(x), clearly couples R and
L movers. However, as long as the fermion density is not
commensurate with the underlying lattice, most of the terms in
Hint are irrelevant in the renormalization group sense [39,40],
and the only remaining interactions are of the form

Hint =
∑

ν,ν ′=R,L

∫
dxdyV (x − y)ψ†

ν (x)ψ†
ν ′ (y)ψν ′ (y)ψν (x).

(A2)

Within the Luttinger liquid paradigm (see [39,40] for full
details on the formalism used in this Appendix) the fermionic
Hamiltonian is then mapped onto a set of bosonic, harmonic-
oscillator-type Hamiltonians, with boson fields representing
the density fluctuations of the R and L movers. The interac-
tions in Eq. (A2) cause a coupling between the R- and L-type
boson fields for ν �= ν ′, but this coupling remains bilinear,
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so that the Hamiltonian is a quadratic form described by a
2 × 2 matrix for the R, L fields, which can be straightfor-
wardly diagonalized. Although they mix contributions from
both the original R and L movers, the resulting eigenmodes
φR,L describe wave packets that move only to the right or the
left and hence maintain effectively the decoupling of R and L
moving modes. The resulting Hamiltonians can be written for
the spinless (or spin-polarized) case as

Hν =
∫

dx
v

4πK
[∂xφν (x)]2 + μνNν (A3)

for ν = R, L, where the fields obey the commutation relations

[φν (x′), ∂xφν ′ (x)] = iπKδν,ν ′δ(x − x′); (A4)

that is, φν and ∂xφν are conjugate boson fields up to a normal-
ization. The parameter K results from the diagonalization of
the 2 × 2 matrix and thus encodes the entire effect of Hint. It
takes the values discussed in Sec. V.

The term μνNν in Eq. (A3) contains the energy correction
from the chemical potentials μν and the particle numbers
Nν of ν movers. This term depends on the choice of gauge
for μν but drops out in the gauge-independent expressions
considered below and for the heat currents Q̇ν discussed in
the main text.

The original fermion operators are expressed in terms of
these eigenmodes as

ψν (x) = ην√
2πa

e− i
2 (ν−K−1 )φL (x)− i

2 (ν+K−1 )φR (x), (A5)

with the signs ν = R = + and ν = L = − and a being a short-
distance cutoff, typically on the order of the lattice spacing.
The ην are operators that lower the overall fermion number by
1 and guarantee the fermionic exchange statistics. For further
analysis they do not play any further role and can be dropped
henceforth.

The forward-scattering term on the impurity is obtained
from point splitting of the densities,

ψ†
ν (x)ψν (x) = ν + K−1

2π
∂xφR(x) + ν − K−1

2π
∂xφL(x). (A6)

We have omitted here a term proportional to the average
particle density kF,ν as it contributes only a constant to the
Hamiltonian. Consequently, we have

U (x)
∑

ν

ψ†
ν (x)ψν (x) = U (x)

πK
[∂xφR(x) − ∂xφL(x)]. (A7)

This term thus separates well into R and L moving con-
tributions such that the total ν moving Hamiltonian after
subtraction of the offset by the chemical potential reads

Hν − μνNν =
∫

dx
[ v

4πK
[∂xφν (x)]2 + ν

U (x)

πK
∂xφν (x)

]
.

(A8)

On the other hand, the backscattering Hamiltonian Hb be-
comes

Hb =
∫

dx U (x)e−2ikF xψ
†
R(x)ψL(x) + H.c.

=
∫

dx
U (x)

2πa
e−2ikF xeiφL (x)+iφR (x) + H.c., (A9)

with 2kF = kR
F + kL

F . The interaction-caused renormalization
causes further effective multiparticle backscattering terms in
Hb [1,2]. For the main correction to the current and thus the
main contribution to Q̇r

ν these are less relevant, however, and
do not need to be considered. Charge rectification, on the other
hand, depends directly on these multiparticle terms which
were accordingly analyzed in detail in Refs. [3–5], hence the
cited different scaling laws for charge rectification.

For the heat transferred through backscattering, expressed
by the commutator [Hν − μνNν, Hb], we therefore need to
evaluate the commutators of (∂xφν )2 and ∂xφν with Hb as
given in Eq. (A9). From the commutation relations (A4) we
see that

[∂xφν (x), eiφL (x′ )+iφR (x′ )] = πK eiφL (x)+iφR (x)δ(x − x′). (A10)

The commutator with (∂xφν )2 takes a similar form with an
additional factor ∂xφν . As noted in the main text, such terms
produce less relevant logarithmic corrections to the leading
expression, so we can leave them aside. The commutator for
the heat backscattering current is then given by

[Hν − μνNν, Hb]

= ν

∫
dx U 2(x)

e−2ikF x

2πa
eiφL (x)+iφR (x) − H.c.

= ν

∫
dx U 2(x)e−2ikF xψ

†
R(x)ψL(x) − H.c. (A11)

This is exactly the same result obtained from the pure
fermionic description of Eq. (5) but obtained here for a general
interacting system with arbitrary values of K . It is notable
that the backscattering heat current operator has no direct K
dependence.

When the spin degree of freedom is taken into account, the
bosonic fields double into charge and spin fluctuations, but
the structure of the equations and the identities are identical,
up to extra charge and spin labels. Equation (A11) is again
unchanged from its noninteracting fermionic expression.

Finally, the evaluation of the correlation functions in
Eq. (7) follows the standard method. The expectation val-
ues in Eq. (7) can be reduced to the computation of
bosonic correlators through the identity 〈eiφν (t )e−iφν (0)〉 =
e〈φν (t )φν (0)−[φ2

ν (t )+φ2
ν (0)]/2〉, which is valid for a quadratic bosonic

theory. Here we have set φν (t ) = φν (x = 0, t ). Focusing again
on the spinless case, the bosonic correlators are then evaluated
as [39,40]

〈φν (t )φν (0) − [
φ2

ν (t ) + φ2
ν (0)

]
/2〉 = −K ln[(ia − vt )/ia],

(A12)

where a is the short-distance cutoff of the theory and v =
vF /K the interaction renormalized Fermi velocity. The cor-
relators in Eq. (7) lead to the exponential of two such bosonic
correlators, which thus provides the time dependence 1/tγ

with γ = 2K , as discussed in Sec. V. The limit K = 1
matches indeed the noninteracting case.

For the spinful case the eigenmodes φλ,ν acquire the fur-
ther index λ = c, s expressing the charge and spin degrees
of freedom. The latter are independent and obey the same
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commutation relations (A4) with an additional δλ,λ′ factor.
The Hamiltonian decomposes into four terms Hλ,ν , each of
which is of the form of Eq. (A3) with the replacement K →
Kλ. The same replacement of K is made for the correla-
tors in Eq. (A12). For fermion operators the exponential in

Eq. (A5) is replaced by ψν,σ ∼ e−i2−3/2(ϕc,ν+σϕs,ν ), where σ =
± is the additional spin index and ϕλ,ν = (ν − K−1

λ )φλ,L +
(ν + K−1

λ )φλ,R. Consequently, the exponent γ for the time
dependence in the heat current correlators is replaced by γ =
Kc + Ks, as described in Sec. V.
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