Vauation Risk Revalued

Oliver de Groot, Alexander W. Richter and Nathaniel A. Throckmorton

University of

St Andrews

0p)
O
-
e,
o
o
ey
n
2,
O
-
O
=]
O
7
Q)
-
o
il
-
Q
-
O
®
O
7
O
-
77
D,
O
-
g
Q)
e,
M
-3
7

School of Economics and Finance Discussion Paper No. 1805

17 Dec 2018

JEL Classification: D81; G12

Keywords. Epstein-Zin Utility; Valuation Risk; Equity Premium Puzzle;
Risk-Free Rate Puzzle




Valuation Risk Revalued

Oliver de Groot Alexander W. Richter Nathaniel A. Throckhoor

October 1, 2018

ABSTRACT

This paper shows the recent success of valuation risk (tiraference shocks in Epstein-
Zin utility) in resolving asset pricing puzzles rests sémsly on an undesirable asymptote that
occurs because the preference specification fails to patikey restriction on the weights in
the Epstein-Zin time-aggregator. In a Bansal-Yaron lamg+isk model, our revised valuation
risk specification that satisfies the restriction providesigerior empirical fit. The results also
show that valuation risk no longer has a major role in magliire mean equity premium and
risk-free rate but is crucial for matching the volatilitychautocorrelation of the risk-free rate.

Keywords Epstein-Zin Utility; Valuation Risk; Equity Premium PuezRisk-Free Rate Puzzle
JEL ClassificationsD81; G12

*de Groot, School of Economics and Finance, University of Btrdws, St Andrews, Scotland and Monetary
Analysis Division, European Central Bank, Sonnemannstra®0, Frankfurt am Main, Germany (oliverdeg-
root@gmail.com); Richter, Research Department, FedeegabRe Bank of Dallas, 2200 N. Pearl Street, Dallas,
TX 75201 (alex.richter@dal.frb.org); Throckmorton, Depzent of Economics, William & Mary, P.O. Box 8795,
Williamsburg, VA 23187 (nathrockmorton@wm.edu). We esalicwant to thank Victor Xi Luo for sharing the data
and code to “Valuation Risk and Asset Pricing.” We also thislaktin Andreasen, Jaroslav Borovicka, Marc Giannoni,
Ken Judd, Evan Koenig, Wolfgang Lemke, Hanno Lustig, Waehl, Karl Schmedders, and Ole Wilms for helpful
comments that improved the paper. The views expressedsip#iier are those of the authors and do not necessarily
reflect the views of the European Central Bank, the Feders¢iRe Bank of Dallas, or the Federal Reserve System.



1 INTRODUCTION

In standard asset pricing models, uncertainty enters gftrthe supply side of the economy, either
through endowment shocks in a Lucas (1978) tree model omptivity shocks in a production
economy model. Recently, several papers introduced desidadincertainty or “valuation risk”
as a potential explanation of key asset pricing puzzlesuy@uierque et al. (2016, 2015); Creal and
Wu (2017); Maurer (2012); Nakata and Tanaka (2016); Scleatéhet al. (2018)). In macroeco-
nomic parlance, valuation risk is usually referred to assadalint factor or time preference shdck.
The literature contends valuation risk is an importantichetieant of key asset pricing moments
when itis embedded in Epstein and Zin (1991) recursive peafees. We show the success of val-
uation risk rests on an undesirable asymptote that persdaaletermination of asset prices. The
influence of the asymptote is easily identified in a stylizeztlel. In that model, an intertemporal
elasticity of substitution (IES) marginally above one peeslan arbitrarily large equity premium
and an arbitrarily low risk-free rate, while an IES slightiglow one predicts the opposite results.
Moreover, the asymptote significantly affects equilibriooicomes even when the IES is well
above unity by qualitatively changing the relationshipiesn the IES and the equity premium.
de Groot et al. (2018) show that with Epstein-Zin preferentiene-varying weights in a CES
time-aggregator must sum tao prevent an undesirable asymptote from determining sequiim
outcomes. The current specification used in the literatile to impose this important restriction.
de Groot et al. (2018) propose an alternative specificahiendeforth, the “revised specification”)
that eliminates the asymptote and ensures that preferaneegell-defined when the IES is ofe.
This paper uses the revised specification to re-evaluatetbef valuation risk in explaining
key asset pricing moments. While the change to the modekwpear minor, it profoundly alters
the equilibrium predictions of the model. Key comparatit&tiss, such as the response of the
equity premium and the risk-free rate to a rise in the IESt@wsign. This means that once we
re-estimate the model, the parameters that best fit the dateelaas the relative contribution of
valuation risk change dramatically. For example, our hasehodel with the revised specification
requires a coefficient of relative risk aversion (RA) welbab the accepted range in the literature.
For intuition, consider the log-stochastic discount fa¢®@DF) under Epstein-Zin preferences

M1 = 0log B+ 0(ar — wayr) — (/) Aéq + (0 — 1)7y 441, (1)

where the first, third, and fourth terms—the subjectivealisit factor (3), log-consumption growth
(Act11), and the log-return on the endowmeif;, )—are all standard in this class of asset pricing
models. The second term captures valuation risk, wheiie a time preference shock. In the

Time preference shocks have been widely used in the maeratiitre (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rdierg and Woodford (1997); Smets and Wouters (2003)).
2Rapach and Tan (2018) estimate a production asset pricingindgth the specification in de Groot et al. (2018).
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current literaturepy = 0. Once we revise the preferences and re-derive the log-S®findw = 5.
When we apply this single alteration to the model, the agsghpg predictions are starkly different.
The asymptote in the current valuation risk specificatioreliated to the preference parameter
0 =(1—~)/(1—1/¢) that enters the log-SDF, wheteis RA and is the IES. Under constant
relative risk aversion (CRRA) preferences= 1/1. In this casef = 1 and the log-SDF becomes

Mys1 = log B+ (4 — wag1) — Aépyr /7). (2)

The return on the endowment drops outDf §o the log-SDF is simply composed of the subjective
discount factor and consumption growth terms. The advantédepstein-Zin preferences is that
they decouple and, so it is possible to simultaneously have high RA and a high However,
there is a nonlinear relationship betwe@and v, as shown irfigure 1 A vertical asymptote
occurs atp = 1: 6 tends to infinity as) approaches from below while the opposite occurs as
1) approacheg from above. When the IES equalsé is undefined. In addition to the vertical
asymptote ir¢, there is also a horizontal asymptotel at  as the IES becomes perfectly elastic.

Key Preference Parameter (0 = (1 —+)/(1 — 1/9))
T T

8 T T T
6 v =2
4 ————— Py:
Trmhmm 7—27¢—>00
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0
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Figure 1: Preference paramefen the stochastic discount factor from a model with Epstéimpreferences.

Under Epstein and Zin (1989) preferences and the gendiahza de Groot et al. (2018) to
include valuation risk, the asymptotefigure 1does not affect asset prices. There is a well-defined
equilibrium when the IES equalsand asset pricing predictions are robust to small variation
the IES around. Continuity is preserved because the weights in the tinggeggtor always sum
to unity. An alternative interpretation is that the timegeggator maintains the well-known prop-
erty that a CES aggregator tends to a Cobb-Douglas aggreggatioe elasticity approachésThe
current specification violates the restriction on the wesigto the limiting properties of the CES
aggregator break down. As a result, the asymptotigure 1permeates key asset pricing moments.

Taken at face value, the asymptote that occurs with themispecification resolves the equity
premium (Mehra and Prescott (1985)), risk-free rate (W&B@)), and correlation puzzles (Camp-
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belland Cochrane (1999)). Furthermore, when we estimatedehthat includes valuation risk and
a small long-run predictable component in consumption anidehd growth (henceforth, “long-
run risk) following Bansal and Yaron (2004), counterfatemercises demonstrate that asset prices
are almost completely explained by valuation risk, rathantlong-run risk. The reason is that val-
uationrisk is able to match the mean equity premium andfris&+ate while maintaining a low cor-
relation between the equity return and consumption andieind (henceforth, cash flow) growth.
We summarize our main results as follows: (1) The curreniatadn risk specification fits the
data well due to an undesirable asymptote; (2) In our baseliodel, the revised specification does
not perform as well; (3) When we add Bansal-Yaron long-rak,nevised valuation risk is impor-
tant for matching the volatility and autocorrelation of tiek-free rate but plays only a minor role
in determining most asset pricing moments. Nevertheleesgvised specification fits the data bet-
ter than the current specification in this model. This is heeaevised valuation risk has a distinct
role, matching the dynamics of the risk-free rate while loag risk captures the other moments;
(4) Extending the model so valuation risk shocks directfgatfcash flow growth further improves
the empirical fit and helps resolve the correlation puzzilenditional on the set of data moments
we match, we show this extension is statistically prefetoetthe addition of stochastic volatility.
The paper proceeds as followSection 2describes the baseline model and the current and
revised preference specificationSection 3analytically shows why asset prices depend so dra-
matically on the way valuation risk enters the Epstein-Zility function. Section 4quantifies the
effects of the valuation risk specification in our baselireael. Section Sestimates the relative im-
portance of valuation and long-run risRection éextends our long-run risk model to include valua-
tion risk shocks to cash flow growth and stochastic volgtdit cash flow riskSection 7concludes.

2 BASELINE ASSEFPRICING MODEL

We begin by describing our baseline model. Each perideihotesl month. There are two assets:
an endowment share, ;, that pays incomey, and is in fixed unit supply, and an equity shag,
that pays dividendsi;, and is in zero net supply. The agent choogegss ;, s2 };°, t0 maximize

Uf = (1= B)ey ™ +af BEJUS) NP/, 1£ 9 >0, 3)
as used in the current (C) asset pricing literature, or

pr_ J—a EB)ci' ™ 4 af B(E[(UF )Y/ 0=) | for 14 ¢ > 0, @)
B e o (27 il Rl fory =1,
as in the revised (R) specification of de Groot et al. (2018 E, is the mathematical expec-
tation operator conditional on information available irripd t. The time-preference shocks are



denoted:{ > 0 and0 < aff < 1/3.3* The key difference between the preferences is as follows:

The time-varying weights of the time-aggregato3j (1 — 3) anda¢ 3, do
not sum tal, whereas the weights i@), (1 — a?3) anda?3, do sum tal.

The representative agent’s choices are constrained byoidildget constraint given by
Ct + DytS1t + DatSat = Pyt + Ye)S14—1 + (Pae + di)s24-1, )

wherep, , andp,,, are the endowment and dividend claim prices. The optimadityditions imply

Ty t+1 = (py,t+1 + yt+1)/py,t7 (6)

Eym]yry i) =1,
=1, 7Tar1 = P + dev1)/Pass (7)

E, [m§+1rd,t+1]

wherej € {C, R}, r,44+1 andr, ., are the gross returns on the endowment and dividend claims,

A C \1- 1-1
c _ Cpf G+l (V&) g
My = Gy B (C—t) <W) : (8)
R _ rafl-ainp Cty1 - (VE) 1-3
mt+1:atﬁ<1—atRﬁ) ( Cy ) (W) ) (9)

andV/ is the value function that solves the agent’s constrainéishigation problem.
To permit an approximate analytical solution, we rewr@eand (7) as follows

Et[eXp(m{H + TAy,t—H)] =1, (10)
Eilexp (g + Far1)] = 1, (11)

wherer], , is defined in {) anda; = a¢ =~ af*/(1 — B) so the shocks in the current and revised
models are directly comparable. The common time prefershoek,a, ., ;, evolves according to

&t—l—l = pa&t + Oa€a,t+1, €at+1 ™~ N(O7 1)7 (12)

where0 < p, < 1is the persistence of the process,> 0 is the shock standard deviation, and a
hat denotes a log variable. We then apply a Campbell ande8il988) approximation to obtain

Pytt1 = Kyo + Kyt Zy 1 — 2yt + DYir, (13)

Patr1 = Kdo + Kd1Zd+1 — 2de + Ddig, (14)

3Kollmann (2016) introduces a time-varying discount fadtoan Epstein-Zin setting similar to our formulation. In
that setup, the discount factor is a function of endogeryaletlermined consumption rather than a stochastic process.

“In the literaturea$ typically hits current utility, rather than the risk aggaggr. However, with a small change in
the timing convention of the preference sho®,ié isomorphic to the specification used in the literature. We the
specification in 8) because it better facilitates a comparison with the reMmeferences. Sefppendix Afor details.
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wherez, ., is the price-endowment ratio, . is the price-dividend ratio, and

Kyo = log(1 + exp(Zy)) — K12y, Ky = exp(2,)/(1 + exp(Zy)), (15)
rao = log(1 +exp(24)) — Ka12a,  Ka1 = exp(Za)/(1 + exp(Zq)), (16)

are constants that are functions of the steady-state pridewment and price-dividend ratios.
To close the model, the processes for log-endowment andiladend growth are given by

Ali1 = oy + 0yeyit1, yar1 ~ N(0, 1), (17)
Adyyy = pig + TayOyEyit1 + Vaoy€ait1, a1 ~ N(0, 1), (18)

wherey,, andy, are the steady-state growth rateg,> 0 andvy,0, > 0 are the shock standard

deviations, andr,, captures the covariance between consumption and divideowtly Asset

market clearing implies; ; = 1 ands,; = 0, so the resource constraint is givendy= ;.
Equilibrium includes sequences of quantitigs};°,, prices{m1, Zy.+, Zat, Py.t+1, Tat+1Fico

and exogenous variabléay, , , Ady. 1, aiy1 132, that satisfy {), (10)-(14), (17), (18), and the re-

source constraint, given the state of the econdmy};,, and sequences of shocKs, ¢, €4+, €4t } 12 -
We posit the following solutions for the price-endowmend @mice-dividend ratios:

Zyt = Myo + My1Gs,  Zdg = Nao + Nardy, (19)

wherez, = 1,0 andz; = n4. We solve the model with the method of undetermined coefftsie
Appendix Bderives the SDF, a Campbell-Shiller approximation, thatsmh, and key asset prices.

3 INTUITION

This section develops intuition for why the valuation riglesification has such large effects on
the model predictions. To simplify the exposition, we caoesidifferent stylized shock processes.

3.1 CONVENTIONAL MODEL First, itis useful to review the role of Epstein-Zin prefeces and
the separation of the RA and IES parameters in matchingskenee rate and equity premium. For
simplicity, we remove valuation risks{ = 0) and assume endowment/dividend risk is perfectly
correlated ¢, = 0; mq, = 1). The average risk-free rate and average equity premiurgiaee by

Elfg] = —log B + py /1 + (1) — y) (1 =) =)0} /2, (20)
Elep] = oy, (21)

where the first term in20) is the subjective discount factor, the second term acsdiontendow-
ment growth, and the third term accounts for precautionamng)s. Endowment growth creates



an incentive for agents to borrow in order to smooth consionptSince both assets are in fixed
supply, the risk-free rate must be elevated to deter bormgwiVhen the IESy), is high, agents are
willing to accept higher consumption growth so the interast required to dissuade borrowing is
lower. Therefore, the model requires a fairly high IES tochahe low risk-free rate in the data.
With CRRA preferences, higher RA lowers the IES and pushethepisk-free rate. With
Epstein-Zin preferences, these parameters are indepesdesm high IES can lower the risk-free
rate without lowering RA. Notice the equity premium only éegs on RA. Therefore, the model
generates a low risk-free rate and modest equity premiumswificiently high RA and IES param-
eter values. Of course, there is an upper bound on what tatesteasonable RA and IES values,
which is the source of the risk-free rate and equity premiugzfes. Other prominent features such
as long-run risk and stochastic volatility a la Bansal aadovi (2004) help resolve these puzzles.

3.2 VALUATION Risk MoDEL Now consider an example where we remove cash flow risk
(o, = 0; 1y = pg) and also assume the time preference shocksiate (p, = 0). Under these
assumptions, the assets are identicalssg, xy1, 7,0, 71) = (Kdo, ka1, Ndo, Na1) = (Ko, K1, o, M1 )-

Current Specification We first solve the model with the current preferences, so DS given
by (1) with w = 0. In this case, the average risk-free rate and average qupeityium are given by

E[ff] = —log B+ py /¥ + (0 — 1)kinio. /2, (22)
Elep] = (1 = 0)xinio?. (23)

It is also straightforward to show the log-price-dividematio is given byz, = 7y + a, (i.e., the
loading on the preference shoek, is 1). Therefore, when the agent becomes more patienéand
rises, the price-dividend ratio rises one-for-one on inbjpad returns to the stationary equilibrium
in the next period. Since, is independent of the IES, there is no endogenous mechahé&rre-
vents the asymptote thfrom influencing the risk-free rate or equity premium. Ité&sg to see from
(16) that0 < x; < 1. Thereforef dominates the average risk-free rate and average equity pre
mium when the IES is nedr. The following result describes the comparative statidh e IES:

As ) approachesdl from abovep tends to—oco. As a result, the average
risk-free rate tends te-co while the average equity premium tendstteo.

This key finding illustrates why valuation risk seems liketsan attractive feature for resolving
the risk-free rate and equity premium puzzles. As the IE€gsd¢n1 from above,f becomes in-
creasingly negative, which dominates other determindittsecrisk-free rate and equity premium.
In particular, with an IES slightly above the asymptote i causes the average risk-free rate to
become arbitrarily small, while making the average equignpmum arbitrarily large. Bizarrely, an



IES marginally belowl (a popular value in the macro literature), generates thesipppredic-
tions. As the IES approaches infinity— 1 tends toy. Therefore, even when the IES is far above
1, the last term inZ2) and @3) is scaled byy and can still have a meaningful effect on asset prices.
An IES equal tol is a key value in the asset pricing literature. For examples the basis
of the “risk-sensitive” preferences in Hansen and Sarg2®®§, section 14.3). Therefore, itis a
desirable property for small perturbations around an IEStofnot materially alter the predictions
of the model. A well-known example of where this propertydsak the standard Epstein-Zin asset
pricing model without valuation risk. Even though the loD¥fSas written in 2) is undefined when
the IES equalg, both the risk-free rate and the equity premiumaf)(and 1) are well-defined.

Revised Specification Next we solve the model with the revised preferences, sofHeiSgiven
by (1) with w = . In this case, the average risk-free rate and average atgkitgremium become

Bliy] = —log B+ p, /¥ + ((0 — Dring — 06%)03/2, (24)
Elep] = (1 — 0)kym + 05)kimo,. (25)

Relative to the current specification, the preference shaaiing,n;, is unchanged. However,
both asset prices include a new term that captures the @iifect of valuation risk on current util-
ity, so a rise i, that makes the agent more patient raises the value of fututaity equivalent
consumption and lowers the value of present consumptioa.algmptote occurs with the current
specification because it does not account for the effectloftian risk on current consumption.

With the revised preferences, =  wheny = 1, so the terms involving cancel out and the
asymptote disappeatsThe presence of valuation risk lowers the average riskrteby 3202 /2
and raises the average equity return by the same amountefdhesrthe average equity premium
equalss?o2, which is invariant to the level of RA. When > 1, k; > 3, so an increase in RA
lowers the risk-free rate and raises the equity returni)As oo, the ratio of the equity premium
with revised specification relative to the current spedificaequalsl + 5(1 — v)/(vyk1). This
means the disparity between the predictions of the two nsagtelws as the level of RA increases.

Expected utility With CRRA preferences)(= 1/1), the specifications irg] and @) reduce to
Uf = B 5% = AT e e /(1= 7).
UtR =E Z;io(l - ﬁaﬁw‘)( ?:1 aﬁri—ﬂﬁjci;}/(l =)

There is no longer an asymptote with the current prefereoeesusé = 1 with CRRA utility. The
current and revised specifications also generate identigallse responses to a time preference

SNoticer; is a convolution of the steady-state price-dividend ratioWhen the IES i, z; = 3/(1— ), which is
equivalent to its value absent any risk. Therefore, wherHSais 1, valuation risk has no effect on the price-dividend
ratio. This result points to a connection with income andstitittion effects, which usually cancel when the IES.is
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shock since); = 1. However, the two specifications still have different agseting implications.
Under the current specification, valuation risk has no éféecthe risk-free rate and there is no
equity premium. With the revised specification, the presesfovaluation risk lowers the average
risk-free rate by3?s2 /2 and the average equity premium equéds?, just like when the IES equals
unity with Epstein-Zin preferences. Therefore, the twoestpd utility specifications are not in-
terchangeable, but the quantitative differences are mifsggnt. We can also conclude that the
asymptote and stark differences in asset prices betwedwthEpstein-Zin preference specifica-
tions come through the continuation vallig,, in the SDF, which drops out with expected utility.

C (uy =0.0015) - -¢ --C (py = 0) —e—R (p,, = 0.0015) - - - - - R (ny =0)
8 Risk-Free Rate (E[r/]) 1 Equity Premium (E[ep]) lPrice-Dividend Loading (x1)
P — oo
(Current Preferences) N
6 . 05 | \\e\,_ 0-999
1
0.998¢
0 0.03[-—2 —— )
0.997¢
0.025
05 0.996
0.02 i
1 0 0102030405 oooc
05 1 15 2 25 3 05 1 15 2 25 3 05 1 15 2 25 3
IES (v) IES (3) IES (v))

Figure 2: Equilibrium outcomes in the model without cash flisk (o, = 0; 11, = pq) andi.i.d. preference shocks
(pa = 0) under the current (C) and revised (R) preference spedditatWe sett = 0.9975, v = 10, ando, = 0.005.

3.3 ILLUSTRATION Our analytical results show the way a time preference shotek€Epstein-
Zin utility determines whether the asymptot&ishows up in equilibrium outcomeBigure 2illus-
trates our results by plotting the average risk-free ragaterage equity premium, arg(i.e., the
marginal response of the price-dividend ratio on the eqeityrn). We focus on the setting s®ec-
tion 3.2and plot the results under both preferences with and wittndowment/dividend growth.
With the current preferences, the average risk-free raleasarage equity premium exhibit a
vertical asymptote when the IESlisregardless of whethet, is positive. As a result, the risk-free
rate approaches positive infinity as the IES approathesm below and negative infinity as the
IES approachesfrom above. The equity premium has the same comparativessteith the oppo-
site sign, except there is a horizontal asymptote as the pia®aches infinity. These results occur
because the current specification misses the direct effeatwation risk on current consumptién.
In contrast, with the revised preferences the averagemskrate and average equity premium
are continuous in the IES, regardless of the valug,0fWheny, = 0, the endowment stream is

6pohl et al. (2018) find the errors from a Campbell-Shillerragpmation of the nonlinear model can significantly
affect equilibrium outcome®Appendix Cshows the undesirable asymptote also occurs in the fulljimear model.
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constant. This means the agent is indifferent about th@graf when the preference uncertainty is
resolved, so botk; and the average equity premium are independent of the IE&nWh> 0, the
agent’s incentive to smooth consumption interacts witheatiagnty about how (s)he will value the
higher future endowment streamihen the IES is large, the agent has a stronger preference for
an early resolution of uncertainty, so the equity premiwesias a result of the valuation risk (see
thefigure 2inset). Therefore, the qualitative relationship betwdenlES and the equity premium
has different signs under the current and revised spedifiatHowever, the increase in the equity
premium is quantitatively small and converges to a levehificantly below the value with the
current preferences. It is this difference in the sign angmtade of the relationship between the
IES and the equity premium that will explain many of the engpirresults in subsequent sections.

4 ESTIMATED BASELINE MODEL

This section returns to the baseline modead@ction 2 which has both valuation and cash flow risk.
We compare the estimates from the model with the current@vidad preference specifications.

4.1 DaATA AND ESTIMATION METHOD We construct our data using the procedure in Bansal and
Yaron (2004), Beeler and Campbell (2012), Bansal et al.§2@&Ind Schorfheide et al. (2018). The
moments are based on five time series: real per capita comtisumexpenditures on nondurables
and services, the real equity return, real dividends, thkrigk-free rate, and the price-dividend ra-
tio. Nominal equity returns are calculated with the CRSRi@aleighted return on stocks. We ob-
tain data with and without dividends to back out a time s¢doesominal dividends. Both series are
converted to real using the consumer price index (CPI). Tminal risk-free rate is based on the
CRSP yield-to-maturity oA0-day Treasury bills. We first convert the nominal series & vsing
the CPI. Then we construct ax-antereal rate by regressing tlex-postreal rate on the nominal
rate and inflation over the last year. The consumption datansial. We convert the monthly asset
pricing data to annual series using data from the last mohn#lach year. The model is estimated
using annual data from 1929 to 2017—the longest time spatabieawithout combining sources.

We estimate each model in two stages. In the first stage, w&eseralized Method of Mo-
ments (GMM) to obtain point estimates and a variance-camag matrix of key moments in the
data. In the second stage, we use Simulated Method of Mor{®kis!) to search for the param-
eter vectorf, that minimizes the squared distance between the GMM pshirhates,\if p, and
median short-sample model momenks,. The weighting matrix}¥p, is the inverse diagonal of
the GMM estimate of the variance-covariance matriy, The objective function/, is given by

J(0) = [War(0) — Up) Wp[War(0) — ¥p] /Ny,

’Andreasen and Jagrgensen (2018) show how to decouple thesageing attitude from the RA and IES values.



where we normalize by the number of momen\ts,, soJ reflects the average distance from the
moments in¥ ,. We use simulated annealing and then recursively applydfiatl i nsear ch
to minimizeJ since gradient-based methods alone did not sufficientichkehe parameter space.
Following Albuquerque et al. (2016), our algorithm matckies following 19 moments: the
mean and standard deviation of consumption growth, diddgowth, real stock returns, the real
risk-free rate, and the price-dividend ratio, the corretabetween dividend growth and consump-
tion growth, the correlation between equity returns andhlwoinsumption and dividend growth at
al-, 5-, and10-year horizon, and the autocorrelation of the price-dimntieatio and real risk-free
rate.Appendix DandAppendix Eprovide more information about our data and estimation ogkth

Parameter Current Revised Parameter Current Revised
~ 1.62617 188.36334 I 0.00190 0.00220
) 1.75990 3.53829 Vg 4.25999 4.30687
5] 0.99807 0.99364 Ty —0.01606 —0.65893
Oy 0.00395 0.00378 Oa 0.00028 0.03198
y 0.00167 0.00171 Pa 0.99701 0.99182

(a) Parameter estimates. Current specificatibr: 1.12; Revised specification/ = 1.87.

Moment Data Current Revised Moment Data Current Revised
E[Ac] 2.00 2.00 2.05 SD[Ad] 7.25 5.79 5.66
E[Ad] 2.06 2.30 2.65 SDIrq4] 17.16 17.88 15.62
E[rq) 6.68 5.79 5.72 SD[ry] 2.56 2.82 3.56
Elr] 0.18 0.18 0.39 SD|z4] 0.44 0.43 0.29
E[z4] 3.47 3.47 3.51 Corr[Ac, Ad] 0.02 0.00 —0.15
Elep] 6.51 5.62 5.33 AC|ry] 0.66 0.95 0.91
SDI[A(] 1.36 1.36 1.31 ACz4] 0.92 0.91 0.86

(b) Unconditional short-sample moments given the paranestémates for each model.

Table 1: Baseline model estimates and asset pricing moments

4.2 PARAMETER ESTIMATES AND MOMENTS Table 1shows the estimated parameter values
and selected data and model moments under the current dsddealuation risk specificatiofs.
The current estimates are very similar to the values regantélbuquerque et al. (2016), despite
major differences in the data construction. The currenteh@d = 1.12) fits the data better than
the revised modelf = 1.87). Furthermore, the revised model solved with the curretnnetes fits
the data very poorlyf = 52.61), demonstrating that the two specifications yield shargfeent
guantitative predictions. The current model requires aargably low RA value {.6). The low RA
value is due to the asymptote in the current valuation rigicgigation. An IES close tb raises the
equity premium to an arbitrarily large extent, while IESued further froml cause the equity pre-

80ur data sample effectively begins in 1940 because the longorrelations shorten our sample by years.
Appendix Fshows our results are robust to removing the long-run caticels and extending the sample back to 1930.
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mium to asymptote at a value much higher than the revisedfgadion generates. Therefore, the
current model is able to maintain a very low RA value while chatg key asset pricing moments.
The revised model requires extreme parameter values tchnlacdata, similar to a model
that only includes transitory cash flow risk. For example, RA estimate (88.4) is an order of
magnitude larger than what is usually accepted in the asming literature? Furthermore, the
standard deviation of the preference shock is more than taers of magnitude larger than the
estimate in the current model. Despite these extreme paeanaues, the revised model is unable
to generate a low enough risk-free rate or a high enoughyepteimium to match the data. The
elevated parameter values also cause the revised modedi¢opradict the variance of the equity
return and overpredict the variance of the risk-free ratee fesults demonstrate that valuation risk
is not as successful at solving long-standing asset prymirzgles as the current literature suggests.

5 ESTIMATED LONG-RUN RISk MODEL

In the baseline model, valuation risk explains most of thedsset pricing moments, even after cor-
recting the preference specification. However, the prontirae of valuation risk is not surprising
given that we have abstracted from long-run cash flow risk¢kvis a well-known potential resolu-
tion of many asset pricing puzzles. Therefore, this secdtibnduces long-run risk to our baseline
model and re-examines the role of valuation risk with bothatirrent and revised preferences.

In order to introduce long-run risk, we modif§¢7{) and (L8) as follows:

Agt—l—l = [y + T+ OyEyt+1s Eyt+1 ™ N(Ov 1)7 (26)
Adyy = pg + daie + TayOyEytt1 + Va0y€ars1, €dr+1 ~ N(0, 1), (27)
Tpp1 = Pady + ¢z0y€x,t+1, Ext+1 ™ N(07 1)7 (28)

where the specification of the persistent compongntvhich is common to both the endowment
and dividend growth processes, follows Bansal and YaroQ4R0We apply the same estimation
procedure as the baseline model, except we estimate thd@@adl parameters),, p,, andiy,.*°
Table 2reproduces the results from the baseline model for the meidelong-run risk. With
the current specification, the presence of long-run riskdtamst no effect on the ability of the
model to fit the data—thé value is1.11, compared with .12 in the baseline model (despite three
new parameters). The parameter estimates are also similae baseline model ang does not
really provide long run risk to cash flows with an estimatexsigtence parameter,, of only 0.49.
Next, we decompose the role of valuation risk and cash fldnimigxplaining the asset pricing

9Mehra and Prescott (1985) suggest restricting RA to a maxirofil0. The acceptable range for the IES is less
clearly defined in the literature, but values ab8wae atypical. Both revised estimates are well outside aighanges.

10 ong-run risk adds one additional state varialile,Following the guess and verify procedure applied to thebas

line model, we use Mathematica to solve for unknown coefiisién the price-endowment and price-dividend ratios.
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Parameter Current Revised Parameter Current Revised
~ 1.50849 2.82881 Tdy —0.93531 —5.52759
P 1.53447 3.95238 Oa 0.00027 0.01484
I} 0.99822 0.99835 Pa 0.99707 0.95152
oy 0.00382 0.00168 da 10.82369 1.71444
fhy 0.00166 0.00167 Da 0.49798 0.99932
L 0.00188 0.00160 Vg 0.15588 0.06208
(y 2.77760 8.14652 — — —
(a) Parameter estimates. Current specificatibra: 1.11; Revised specification/ = 0.36.
Current Specification Revised Specification
Moment Data All Shocks Only CFR Only VR All Shocks Only CFR OMR
E[Ac] 2.00 2.00 2.00 2.00 1.99 1.99 2.01
E[Ad] 2.06 2.28 2.28 2.26 1.91 1.91 1.92
E[rg) 6.68 5.77 3.25 5.84 6.97 6.96 2.48
Elry] 0.18 0.16 3.42 0.18 0.14 0.28 2.34
Elz4] 3.47 3.47 4.62 3.43 3.47 3.47 5.18
Elep] 6.51 5.61 —0.17 5.66 6.83 6.68 0.13
SD[Ac] 1.36 1.37 1.37 0.00 1.35 1.35 0.00
SDI]Ad) 7.25 5.67 5.67 0.00 6.13 6.13 0.00
SDIrq] 17.16 17.86 6.14 16.55 17.39 16.82 4.67
SDlry] 2.56 2.78 0.25 2.77 2.58 0.31 2.56
SD[z4] 0.44 0.43 0.04 0.42 0.47 0.47 0.05
Corr[Ac, Ad) 0.02 0.00 0.00 — 0.09 0.09 —
ACry] 0.66 0.94 0.05 0.95 0.67 0.96 0.66
AC|z4] 0.92 0.91 0.00 0.92 0.93 0.94 0.53

(b) Unconditional short-sample moments given the paranestéimates. All Shocks simulates the model with all of thecks turned on, Only CFR
solves and simulates the model with only the cash flow risklshiaand Only VR solves and simulates the model with only gheation risk shocks.

Table 2: Long-run risk model estimates and asset pricing emsn

moments. In addition to showing the estimated moments fiwrentire model (column entitled
All Shocks),table 1breports the moments from two counterfactual simulatioas ¢ither remove
valuation risk (Only CFR) or cash flow risk (Only VR) from theodel. In each case, we re-solve
the models after setting, = 0 for Only CFR andr, = 0 for Only VR, so agents make decisions
subject to only one type of risk. Since the asymptote resulting from the current valuatish ri
specification continues to dominate the determinationséigsrices, long run risk plays only a mi-
nor role. Valuation risk alone explains almost all of theeiggicing moments, including the near-
zero risk free rate an@.5% equity premium. Without valuation risk, the model genesatbnost
no equity premium, &.4% risk-free rate, and equity return volatility much lower thia the data.
The results change dramatically with the revised spedifinan four key ways. One, the model
with long-run risk fits the data much better than the basetiodel (theJ value falls from1.87 to
0.36) and the parameter estimates are consistent with Bansatead (2004). Two, with long-run

1The solution is nonlinear, so the Only CFR and Only VR columimsiot have to sum to the All Shocks column.
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risk, the revised specification fits the data better than theeot specification (with & value of
0.36 compared td.11), in contrast with the results from the baseline model. A waynderstand
this result is to think of the current specification as conmgetvith long-run risk to explain key
asset pricing moments. In contrast, the revised spectitatbmplements the original long-run
risk model, in that valuation risk is able to match momeng thng-run risk struggles to match.
Three, RA declines from88.4 in the baseline model ®.8 in the model with long-run risk, well
within the acceptable range in the literature. Four, thedgiosition shows that valuation risk no
longer explains the vast majority of asset pricing mome@&sh flow risk by itself generates an
equity premium close to the data even though the RA paransegeite low, whereas valuation risk
alone generates almost no equity premium. Instead, valugtk plays an important role because
it explains aspects of the risk-free rate. The standardatievi and autocorrelation of the risk-free
rate in the data ar2 6% and0.66, whereas long-run risk alone generates valugs3if% and0.96.
We conclude that while valuation risk no longer has the gititi unilaterally resolve long-standing
asset pricing puzzles in its revised form, it remains an irtgot aspect of a long-run risk model.

Current Specification Revised Specification
Moment Data All Shocks Only CFR All Shocks Only CFR
1-yearCorr[Ac,rq] 0.01 0.00 0.01 —0.06 —0.06
5-yearCorr[Ac, 1] —0.02 0.00 0.01 —0.01 —0.01
10-yearCorr[Ac, 4] —0.10 0.01 0.01 0.01 0.02
1-yearCorr[Ad, rq] 0.15 0.32 0.95 0.30 0.31
5-yearCorr[Ad, rq] 0.31 0.33 0.99 0.28 0.28
10-yearCorr[Ad, 4] 0.39 0.33 0.99 0.26 0.27

Table 3: Unconditional short-sample moments given thempatar estimates. All Shocks simulates the model with alll
of the shocks turned on and Only CFR solves and simulates ¢laelnwvith only the cash flow risk shocks.

The Correlation Puzzle Another important asset pricing puzzle pertains to theetation be-
tween equity returns and fundamentals (Cochrane and H4h868)). In the data, the correlation
between equity returns and consumption growth is near regaydless of the horizon. The corre-
lation between equity returns and dividend growth is smadirghort horizons but increases over
longer horizons. The central issue is that many assetAgritiodels predict too strong of a correla-
tion between stock returns and fundamentals relative tddkee Clearly, if valuation risk generates
meaningful volatility in asset returns and yet is uncomedlavith consumption and dividend growth
(as in the model isection 2, then valuation risk has the potential to resolve the d¢atin puzzle.
Table 3shows the correlations between equity returns and fundaiseoverl-, 5-, and10-

year horizons in the data and the model. We also considerraedactual with only cash flow risk
(Only CFR). The correlations with consumption growth amaikir across the current and revised
valuation risk specifications. Consistent with the date,rttodel predicts a weak correlation over
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all horizons. With both specifications, cash flow risk is sudint for the model to match the

data. The correlations with dividend growth are also sinataoss the two specifications, but their
sources differ. With the current specification, the low etations are driven by the importance of
valuation risk in the model whereas cash flow risk alone aeglipts the correlation. In contrast,
cash flow risk plays the primary role with the revised speaifan. The intuition for these results is
straightforward. In a model with long-run risk, most of thaatility in equity returns comes from

changes in consumption and dividend growth, while valuetisk is relegated to a secondary role.

6 ESTIMATED EXTENDED LONG-RUN RISK MODELS

This section further examines the role of valuation risk kigeding the model with long-run risk
and the revised valuation risk specification in two indeemadvays. First, we consider an exten-
sion where valuation risk shocks directly affect consumptnd dividend growth, in addition to
their effect on asset prices through the SDF (henceforét,emand” shock model). This feature
is similar to a discount factor shock in a Dynamic StochaSeneral Equilibrium (DSGE) model.
For example, in the workhorse New Keynesian model, an iseréa the discount factor looks
like a typical negative demand shock that lowers interd@ssranflation, and consumption. There-
fore, it provides another potential mechanism for valuatisk to help fit the data, especially the
correlation moments. Following Albuquerque et al. (2048 ,augmentZ6) and @7) as follows:

A1 = My + Ty + OyEyt+1 T TyaOaa,t+1, (29)

Adt+1 = [d + (bd«%t + TdyOyEy,t+1 + ¢d0y€d,t+1 + TdaOaCat+1, (30)

wherer,, andr,, determine the covariances between valuation risk shoaksash flow growth.
Second, we add stochastic volatility to cash flow risk follegvBansal and Yaron (2004)
(henceforth, the “SV” model). This feature generates a-¥agying equity premium and statis-
tically dominates the baseline long-run risk model, as shbwBansal et al. (2016) (henceforth,
BKY). An important question is therefore whether the preseaf SV will further diminish the
role of valuation risk in its revised specification. To irdtae SV, we modifyZ6)-(28) as follows:

Afp1 = pby + Ty + 0y €y 141, (31)

Adt+1 = fd + Qals + TayOy i€y i41 + a0y Edit1, (32)
Tpp1 = Paly + VeOyi€p 141, (33)

Uz,t—i-l = ‘75 + pa’y(gz,t - Uz) + VyEo, t+1, (34)

wherep,, is the persistence of the process3d)andv, is the standard deviation of the volatility
shock. The two models have the exact same number of paransetdre/ values are comparable.
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Parameter Demand SV Parameter Demand SV

0 2.817735 3.683705 Pa 0.951063 0.951095
P 3.398628 3.378736 bd 1.772998 2.945388
B 0.998433 0.998754 Pa 0.999163 0.999143
Oy 0.000482 0.003335 Ve 0.227072 0.018313
y 0.001675 0.001699 Tya 0.082944 —
a 0.001633 0.001695 Tda —1.207079 -
Y 13.683924 4.899773 Po - 0.204595
Tdy —4.123352 —0.822328 Uy — 0.000001
Oq 0.015168 0.014923 — — —

(a) Parameter estimates. Demand shock magiek 0.10; SV model:J = 0.36.

Demand Shock Model Stochastic Volatility Model
Moment Data All Shocks Only CFR Only VR All Shocks Only CFR OMR
E[A(] 2.00 2.00 1.99 2.01 1.99 1.99 2.04
E[Ad] 2.06 1.98 1.93 1.98 1.92 1.92 2.03
E[r4] 6.68 6.82 6.78 2.19 6.80 6.78 2.10
Elrs] 0.18 0.17 0.38 2.26 0.42 0.57 1.93
Elz4] 3.47 3.48 3.43 6.16 3.45 3.45 7.30
Elep] 6.51 6.65 6.40 —0.07 6.37 6.21 0.18
SD[AC] 1.36 1.36 1.28 0.43 1.37 1.37 0.00
SDI[Ad] 7.25 7.21 3.29 6.32 6.15 6.15 0.00
SD[rg) 17.16 16.68 15.75 3.15 17.43 16.88 4.71
SDlry] 2.56 2.66 0.37 2.62 2.57 0.22 2.56
SDlz4] 0.44 0.48 0.46 0.03 0.48 0.48 0.05
Corr[Ac, Ad] 0.02 0.01 0.66 — 0.07 0.07 -
ACry] 0.66 0.67 0.96 0.66 0.66 0.90 0.66
AC[z4) 0.92 0.94 0.94 0.61 0.93 0.94 0.52

(b) Unconditional short-sample moments given the paranestimates. All Shocks simulates the model with all of thecks turned on, Only CFR
solves and simulates the model with only the cash flow risklshiaand Only VR solves and simulates the model with only gheation risk shocks.

Table 4: Extended long-run risk model estimates and asg#hgmoments.

Table 4shows the parameter estimates and moments for both modalsheirevised specifi-
cation!? The demand shock model fits the data better than the basetigerlin risk model (the
J value declines frond.36 to 0.10) because it can generate changes in dividend growth indepen
dent of consumption growth and cash flow risk. In the basdting-run risk model, the only way
to increase the volatility of dividend growth is throughdar cash flow risk shocks. However, a
larger shock to consumption growth would have caused theehodver-predict its volatility in
the data. Similarly, larger dividend growth shocks, despilping to improve the fit of dividend
growth volatility, would have caused equity return vol&itto outstrip the data. In the demand
shock model, valuation risk increases the volatility ofidénd growth without creating a large
effect on equity return volatility because the effect ofualon risk shocks to equity returns are

12In these extended models, the results with the currentfipatadn are similar to previous sections. We focus on
the revised specification, since previous sections alreadw the undesirable properties of the current specificatio
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offset by the response of the price-dividend ratio. Thesefis are evident in the counterfactual
simulations that isolate the effects of each shock. Wherdémeand shock model only includes
valuation risk, there is now sizeable dividend growth vibitat( 6.3% as compared t6% in table 2.

The addition of SV has a smaller effect on our estimates. &hez four noteworthy results.
One, the SV model provides almost no improvement to the ecapiit (the J value declines from
0.364 to 0.356), in contrast with the demand shock model. Two, the estimaitéhe valuation risk
persistence(,) and standard deviatiow() are roughly the same in the models with and without
SV. This suggests the presence of SV does not diminish tleeofolaluation risk. Three, the per-
sistence 4,) and standard deviatiom,) of the SV process are relatively small, further indicating
SV does not play a major role in matching these moments. Bwaicounterfactuals show that with
only cash flow risk, the SV model continues to under-predietvolatility of the risk-free rate.

The low RA and limited role of SV may seem surprising in lighttee results in BKY. We at-
tribute the differences to three factors. One, we matcledifit moments. Our estimation includes
correlations between cash flow growth and equity returnsedisas the volatility and autocorrela-
tion of the risk-free rate, whereas BKY include higher ont@ments such as the heteroscedasticity
of consumption. Two, our effective sample excludes the Gdepression. Our raw data starts in
1929 as in BKY, but we lose 10 years since we match long-ruretairons and use a balanced
sample. Third, we include valuation risk in our model, whigln additional source of volatilify

Demand Shock Specification Stochastic Volatility Spediitca
Moment Data All Shocks Only CFR All Shocks Only CFR
1-yearCorr[Ac,rq] 0.01 —0.01 0.04 —0.04 —0.04
5-yearCorr[Ac, rq] —0.02 0.01 0.08 —0.02 —0.02
10-yearCorr[Ac, 4] —0.10 0.04 0.10 0.00 0.00
1-yearCorr[Ad, rq] 0.15 0.18 0.13 0.31 0.31
5-yearCorr[Ad, 4] 0.31 0.27 0.13 0.27 0.27
10-yearCorr[Ad, 4] 0.39 0.30 0.14 0.26 0.26

Table 5: Unconditional short-sample moments given therpatar estimates. All Shocks simulates the model with all
of the shocks turned on and Only CFR solves and simulates didelnwith only the cash flow risk shocks.

The Correlation Puzzle Table 5shows the demand shock model also makes progress in solving
the correlation puzzle. Just like in the long-run risk madedection 5 both of the extended models
predict near-zero correlations between consumption dgrawt equity returns overla, 5-, and10-

year horizon. However, in the demand shock model, the adioels counterfactually strengthen
over 5- and10-year horizons when it only includes cash flow risk. The @dstiadvantage of the
demand shock model is its ability to match the correlatiogsveen equity returns and dividend

BThere are also differences in the weighting matrix (BKY msixely update it based on model estimates, rather
than fixing it to data) and in how the moments are calculatétv{Bse theoretical instead of short-sample moments).
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growth. Specifically, it predicts a weak correlation at-gear horizon and a stronger correlation
over a5-year horizon. In the SV model, the opposite result occuusthiermore, the counterfactual
simulations show that valuation risk is crucial for obtamia weak correlation atiayear horizon.
These results emphasize that the data strongly prefersetinarti shock model with correlated
cash flow risk and revised valuation risk over the more trawlg! long-run risk model with SV.

7 CONCLUSION

The way valuation risk enters Epstein-Zin recursive wtitias important implications. Under the
current specification in the literature, an undesirablergsgte in the parameter space permeates
equilibrium outcomes. The asymptote occurs as the IES appss unity, but it profoundly affects
asset prices even when the IES is well above one. As a consagjuiae asymptote perversely
allows valuation risk alone to explain the historically lowk-free rate and high equity premium.
Once we revise the preference specification to remove thesinadble asymptote, valuation risk
has a much smaller role in explaining asset pricing momentparticular, it is no longer able to
unilaterally resolve the equity premium, risk-free rated &@orrelation puzzles. However, we show
that valuation risk still plays an important role in matahitihe volatility and autocorrelation of
the risk-free rate. Furthermore, allowing valuation riblosks to directly affect cash flow growth
introduces an important source of volatility to the modelttkignificantly improves the empirical
fit and helps resolve the correlation puzzle. We concludeviddaation risk is not as important as
the current literature suggests, but it still has a consatipleole in explaining certain asset prices.
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A |ISOMORPHICREPRESENTATIONS OF THECURRENT SPECIFICATION

In the current literature, the preference shock typicaitg burrent utility. If, for simplicity, we
abstract from Epstein-Zin preferences, then the valuetimmand Euler equation are given by

Vi = apu(cy) + BE[Viga], (35)
BE[(ar1 /) (crpr) fu'(ce)ryep1] = 1. (36)

The shock followsAd, 1 = pAd; + 0,64, SO the change in; is known at timet. Alternatively, if
the preference shock hits future consumption, the valuetimmand Euler equation are given by

Vi = ul(er) + aBE[Viga], (37)
atﬂEt[u/(ct—l—l)/u/(ct)ry,t-i-l] =L (38)

If the shock followsa; = pa;_1 + o,.&¢, the two specifications are isomorphic because setting
a; = ayq1/ 0y In (38) yields 36). We use the second specification because it is easier toazemp
the current and revised preferences when the shock alwaysssip in the Euler equation in levels.

B ANALYTICAL DERIVATIONS

Stochastic Discount Factor The value function for specificatione {C, R} is given by

. 7 . — -
Vi = mafud i g (Bl (Vi) )0
— (et + pyesie + patsae — Pyt + Ye)S1,0-1 — (Pax + di)S2,0-1),

wherew({, = 1— 5, wf, = 1—af*f, w§, = af B, andwy’, = a;*3. The optimality conditions imply

w] (Ve = N, (39)
w) (VO BV DY B (V) T 0V /0510)] = Ay, (40)
wh (VO BV DY B (V) T 0V /952.)] = Aebase, (41)

wheredV; /ds, ;-1 = N(pys + ) anddVy /sy—1 = M(pay + di) by the envelope theorem.
Updating the envelope conditions and combini@g){(41) generatesq) and Q) in the main text.
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Following Epstein and Zin (1991), we posit the following imum state variable solution:

th =&1a810-1 + 4521 and ¢ = E54514-1 + EarS2,0-1. (42)
where is a vector of unknown coefficients. The envelope conditammabined with 89) imply

Ene=w] (VY7 (py s + w1, (43)
S = w{,t(‘/tj)l/wct_l/w(pd,t +dy). (44)

Multiplying the respective conditions by ;_;, ands,;_; and then adding yields
Vi = w] (V)Y (D + w11+ (P + di)szimn), (45)
which after plugging in the budget constrairi),(and imposing equilibrium can be written as
(th)(lﬂw = w{,tct_l/w(ct + DyeS1,0 + DaeSas) = w{,tct_l/w(ct + Py,t)- (46)
Therefore, the optimal value function is given by
wh o e = w (B (V) ). (47)
Solving @6) for V/ and @7) for Et[(%{'rl)l‘v] and then plugging inta8) and @) implies
miy = () (e /e Mry s, (48)
wherer] = wj,wl,,, /w],. Taking logs of 48) yields (1), given the following definitions:
i = b +af,
i = F+af +log(1 — Bexp(agy)) —log(l — Bexp(af) = B + (&' — Bafyy)/(1 = B),

anda, = a¢ = af/(1 — ) so the preference shocks in the current and revised modaethractly
comparable. Itimmediately follows that = 3+a,—w/d,, asin @), wherew® = 0 andw? = 4.

Campbell-Shiller Approximation The return on the endowment is approximated by
Py i1 = 10g(Yrr1(Pye+1/Yer1) + Yer1) — 1og(ye(py.e/yt))
= log(exp(Zy41) +1) — 2y + AYppa

~ log(exp(2y) + 1) + exp(2)) (Zy,141 = 2y)/ (1 + exp(2y)) = 2y + Al

= Kyo + Ky1Zy41 — 2yt + A1

The derivation for the equity return, ., is analogous to the return on the endowment.
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Model Solution We use a guess and verify method. For the endowment claimbtaéno

0 = log(Et[exp(rie1 + Pye41)])
= log(Et[exp(HB + Q(dt — wjdt+1) + 9(1 — 1/¢)A@t+1 + H(Hy() + Hyléy,t-i-l — éy,t))])

| 0B+ 0(a — wiari1) + 0(1 — 1/9) (py + oyeyis1)
=log | E; |exp . .
+0ky0 + Ory1(nyo + MyrGes1) — O(ny0 + My16e)
93 +0(1 = 1/9)py + O(kyo + nyo(ky1 — 1))
=log | E; |exp +0(1 — wpg + Ny1 (Ky1pa — 1))y
+0(1 — 1/9)oyeyr1 + O(ky1ny1 — w)0aeq 1
= 95 +0(1 = 1/9)y + 0(ky0 + myo (K1 — 1)) + %(1 - 1/7/’)2‘75
+ Gy — @)% + 0(1 = W po + 11 (sy1p0 — 1)),

where the last equality follows from the log-normalityesfp (s, ;+1) andexp(e,,i+1)-
After equating coefficients, we obtain the following exctrsrestrictions:

B+ (1= 1/¢)py + (Kyo + myo(kyr — 1)) + g((l - 1/¢)2U§ + (Ky1my1 — Wj)203) =0, (49)
1- wjpa + nyl(/{ylpa - 1) =0. (50)

For the dividend claim, we obtain

0 = log(E: [exp(mt-i-l + Fat+1)])

_ 95 +0(ar — W) + (01 = 1/9) — DAGegr + Adyya
og Et exp A R k
— 1) (kyo + Kyt Zya1 — Zyt) + (Kao + KarZae+1 — Zdt)
63+ (0(1 — 1/%) — Dty + ua
0—1 -1 -1
“log | B, |exp +(0 — 1) (kyo + myo(ky1 — 1)) + (Kao + Nao(ka1 — 1))

+(9(1 - ija) + (9 - 1)77311 (“ylpa - 1) + 77d1(’fcllpa - 1))&1%
(Tay — YV)oyeyr1 + (0 — Dkyimyr + kainar — 0w?)0acat+1 + Yaoyed i

+ (9 1-— 1/1/1 — 1)Ny + Ug + (9 — 1)(/£y0 + 77y0("<5y1 — 1)) + (Fado + ndo(’idl — 1))
+ (0(1 — wjpa) + (0 — Dny1(ky1pa — 1) + Na1(Kdi1pa — 1))ay
+ %((Wdy v)? 0’ + ((0 — Dkyaing1 + ka1 — 0w’ )02 + ¢§0§)-

Once again, equating coefficients implies the followinglesion restrictions:

08 + (0(1 —1/1) — Dy + pa + (8 — 1) (kyo + nyo(ky1 — 1)) + (Kao + Mao(kar — 1))
‘l'%((ﬂ'dy - 7)205 + ((0 = Dryanyg + Kaiar — 9wj)203 + ?/)305) =0, (51)
(1 — ija) + (0 — )nyi(ky1pa — 1) + Nar(Karpa — 1) = 0. (52)

Equations 49)-(52), along with (L5) and (L6), form a system o8 equations and unknowns.
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Asset Prices Given the coefficients, we can solve for the risk free ratee Ebler equation implies

P = —log(Ey[exp(ines1)]) = —Ey[tiu] — 5 Var[iiva],
since the risk-free rate is known at tineThe pricing kernel is given by
s = 08 + 0(a; — ware) — (0/9) Afipr + (0 — 1)fy 441
= 93 +0(a — W ygr) — YAG1 + (0 — 1)(Kyo + K12y e1 — Zyt)
= 96 — Yy + (9 - 1)(“@/0 + 77@/0("%1 - 1)) + (9(1 - wj) + (9 - l)nyl(ﬁylpa - 1))&t
+ ((0 JEy1 Myt — ij)aagaﬂ—l — VOyEy,t+1

= 08 — Yy + (0 = 1) (g0 + myo(ryn — 1)) + (1 — wpa)i
+ ((6 —

)Féyﬂ}yl - ij)Uaga,tH) — VOyEyt+1,

where the last line follows from imposing@). Therefore, the risk-free rate is given by

Tre = Yy — HB - (9 - 1)(’%0 + nyO(“yl - 1)) - (1 - wjpa)&t

—17%0) — 5((0 = Dkyiny — 0u’)?0?.
Note that';, = log(E;[exp(7+)]). After plugging in @9), we obtain
Fra = ty/t =B = (1= pa)as + 5((0 = Dgangy — 0(w’)?)og + 5((1/Y = 7)1 =) =)oy
Therefore, the unconditional expected risk-free ratevsmgby
E[fs] = =B + 1y /¥ + 5((0 = Drgyy = 0(w))o + 5((1/d = 7)1 =) = 7)oy (83)

We can also derive an expression for the equity premitifiep,. 1|, which given by

log(E [eXp(f’d7t+1 - f’f,t)]) = Fk; [fd,t+1] — Tyt %Val"t [fd,t+1] = — Covy[n41, f’d7t+1]>

where the last equality stems from the Euler equatE;hﬁHlefd,tH]Jr% Var M1 +7gq441] = 0.
We already solved for the SDF, so the last step is to solven®etuity return, which given by

a1 = Ko + ka1 Zder1 — Zat + Adp
= Ko + Ka1 (Ndo + Nardes1) — (Nao + Narae) + Adp

= ftg + Ko + Nao (ka1 — 1) + Na1 (Ka1pa — 1)as + Ka1Md10a€at41 + TayOyEy t+1 + Va0yed t+1-

Therefore, the unconditional equity premium can be wrigéen

Elep| = vwdyai + (0w + (1 — ) ky1my1) K1 N o= (54)
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B.1 SPECIAL CASE L (0, = ¥g = 0 & w4, = 1) Inthis case, there is no valuation risk & 0)
and cash flow risk is perfectly correlatefg, .1 = j, + oyey141; Adyr = pa + oy€y.141). Under
these two assumptions, it is easy to see thdt&nd 64) reduce to 20) and @1) in the main text.

B.2 SPECIAL CASE 2 (0, = 0, p, = 0, & p, = pg) In this case, there is no cash flow
risk (A1 = Adyyq = it,) and the time preference shocks ar@l. (G411 = 04€4441). UN-
der these two assumptions, the return on the endowment artkend claims are identical, so
{Ky0s Byt Nyo, M1} = {Kdo, Kar, Nao, N } = {ko, k1,m0,m }. Therefore, §3) and 64) reduce to
(22) and @3) for the current specification ané4) and @5) for the revised specification.

The exclusion restrictionpQ), impliesn; = 1 so @9) simplifies to

0:B+(1—1/w)uy+/£0+770(m1—1)+g(m1—wj)202. (55)

First, recall tha) < x; < 1. Therefore, the asymptote éthwill permeate the solution with the
current preferencesol = 0). However, with the revised preferences?(= ), we guess and
verify thatx; = 3 wheny = 1. In this case,§5) reduces to + o + no(B — 1) = 0. Combining
with (15), this restriction implies thafy = log 5—log(1—/5) andkg = —(1—7) log(1—3)—f log S.
Plugging the expressions fgs, x¢, andx; back into L5) and £5) verifies our initial guess fox;.

C NONLINEAR MODEL ASYMPTOTE

The Euler equation, written in terms of the price-divideatia, is given by

1/6

a3 , _
= th B (- Xjat+1ﬁ)ﬂé+f/w(1 + Zt+1))(i : (56)

Tt4+1

Zt

assumingu; 11 = yi1/y: = div1/d;. Notice the asymptote disappearSi(z; 1) — 0 asy — 1.
Consider first the case without valuation riskasa= 1 for all £. The Euler equation reduces to

2= B(E (" (1 + 2042) ). (57)

Wheny = 1, we guess and verify that = /(1 — (), so the price-dividend ratio is constant. This
is the well know result that when the IESlisthe income and substitution effects of a change in
endowment growth offset. Therefore, the price-divideritbrdoes not respond to cash flow risk.
Consider next the case whepis stochastic under the revised preferenggs £ 1). In this
case, when) = 1 we guess and verify that = ,3/(1 — a,3). Notice the price dividend ratio is
time-varying but independent 6f Therefore, an asymptote does not affect equilibrium cutn
Finally, consider what happens under the current prefesé’ = 0), which do not account
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for the offsetting movements in— a;5. To obtain a closed-form solution for any IES, we assume
u, = 1 and the preference shock evolves accordinggél + a,.11) = oe,.1, Wwheres,; is stan-
dard normal. Under these assumptions, we guess and vatfthiprice-dividend ratio is given by

2 = amn = Bt exp(00?/2). (58)

In this casef appears in the price-dividend ratio, so the asymptote &fleguilibrium outcomes.
These results prove that the asymptote is not due to a Cahlfpiier approximation of the model.

D DATA SOURCES
We drew from the following data sources to estimate our nmsdel

1. [RCONS] Per Capita Real PCE (excluding durables) Annual, chained 2012 dollars.
Source: Bureau of Economic Analysis, National Income amdi®ct Accounts, Table 7.1.

2. [RET D] Value-Weighted Return (including dividends). Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIREVD).

3. [RET X] Value-Weighted Return (excluding dividends) Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIRETX).

4. [CPI] Consumer Price Index for All Urban Consumers: Monthly, not seasonally ad-
justed, index 1982-1984=100. Source: Bureau of Labor$iedi(FRED ID: CPIAUCNS).

5. [RF R] Risk-free Rate: Monthly, annualized yield calculated from nominal priGource:
Wharton Research Data Services, CRSP Treasuries, RisliSéges (CRSP ID: TMYTM).

We applied the following transformations to the above dataces:

1. Annual Per Capita Real Consumption Growth (annual frequeng):

2. Annual Real Dividend Growth (monthly frequency):

P1928M1 - 100, Pt == Pt_l(l + RETXt), Dt - (RETDt - RETXt)Pt_l,
dy=Y"_, ,Di/CPI,, Ad, =100log(d,/d;_12)

3. Annual Real Equity Return (monthly frequency):
™ =log(CPI,/CPI,_,), #4;=1003_, | (log(1+ RETD;)— ")
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4. Annual Real Risk-free Rate (monthly frequency)

Tfrt = RFRt — 10g(CP]t+3/CPIt), ’ﬂ'g = lOg(CPIt/CP]t_lz)/4,
Pri = 400(Bo + B1 REF R, + forf),
Wherij are the OLS estimates in a regression ofékgostreal rate; fr, on the nominal
rate, RF'R, and lagged inflationy?. The fitted values are estimates of theantereal rate.

5. Price-Dividend Ratio (monthly frequency):
Zas =log(P/Y i, 1, Ds)
We use December of each year to convert each of the monthéydéries to an annual frequency.

E ESTIMATION METHOD

The estimation method is conducted in two stages. The fageststimates moments in the data
using a 2-step Generalized Method of Moments (GMM) estimatith a Newey and West (1987)
weighting matrix with10 lags. The second stage implements a Simulated Method of Misme
(SMM) procedure that searches for a parameter vector thaimizes the distance between the
GMM estimates in the data and short-sample predictionseofribdel, weighted by the diagonal
of the GMM estimate of the variance-covariance matrix. Tdiwing steps outline the algorithm:

1. Use GMM to estimate the data momenits,, and variance-covariance matriX.

2. Specify a gues$¥,, for the N, estimated parameters and the parameter variance-cosarian
matrix, X p, which is initialized as a diagonal matrix. Note tlfas model dependent.

3. Use simulated annealing to minimize the distance betweedata and model moments.
(@) Foralli € {0, ..., Ny}, perform the following steps:

i. Draw a candidate vector of parametgis?, where

0o fori =0,

N(#;_1,cXp) fori> 0.

é_cand ~
i

We setc to target an acceptance rate of rougbihys. For the revised specification,

we impose a restriction off**¢ such that3 exp(4(1 — 8)/02/(1 — p2)) < 1, SO

the utility function weights are positive #9.997% of the simulated observations.
ii. Solve the Campbell-Shiller approximation of the modekem ég‘md.
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iii. Simulate the monthly model,000 times for the same length as the data. We draw
initial states,aq, from N(0,02/(1 — p?)). For each simulation, calculate the
moments¥,, ;(#<?), analogous to those in the data.

iv. Calculate the median moments across the short-sampléations, ¥ ,, (#*") =
median ({\If arg (65 }(;010>, and evaluate the objective function given by

e = [0 (05 0) — W p) W[ W (65974) — W) /N,

whereW, is the inverse diagonal of the GMM estimate of the ma1f]1§,.

v. Accept or reject the candidate draw according to

(gamd, Jeand) i § = 0,
(0;, Ji) = < (feomd | Jeand) if min(1, exp(Ji_y — JE) /t) > 4,

~

(0i—1, Ji—1) otherwise

wheret is the temperature andis a draw from a uniform distribution. The lower
the temperature, the more likely it is that the candidatevdsaejected.

(b) Find the parameter draft" that corresponds td™", and updaté& .

i. Discard the firstV,/2 draws. Stack the remaining draws il\g/2 x N, matrix,
0, and define® = © — SN2 4, 5 /(N,/2).
ii. CalculateX? = ©'6/(N4/2).

4. Repeat the previous stéfy ., times, initializing at drawj, = §™ and covariance matrix
Yp = X%. Gradually decrease the temperature each time. Of all thesdifind the lowest

uess 20

20 J values, denotedl.J7*“**}22,, and the corresponding parameter drafg$, >}, .

5. Run Matlab’sf mi nsear ch, using {#7““*}22, as an initial guesses. We simulated the
model5,000 times on each iteration and set the tolerancé tm0.01. The resulting mini-
mum isé;.m'" and the corresponding value isJJW". Repeat, each time updating the guess,
until J7“** — Ji¥" < 0.001. The final parameter estimates correspond tarthe{ /7" }22,.

F ROBUSTNESS OF THEBASELINE MODEL ESTIMATES

The estimation procedure that generates the results in #ie paper matches long-run correla-
tions between equity returns and cash flow growth. We dedinl@ttclude these moments for two
reasons. One, they are used in Albuquerque et al. (2016)egtmate similar asset pricing mod-
els. Two, it allows us to re-examine whether valuation riskpl resolve the correlation puzzle.
However, there is one main drawback of matching long-rumetations—it forces us to remove
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Parameter Current Revised Parameter Current Revised

vy 1.32319 65.25786 hd 0.00153 0.00230
P 1.57352 5.05068 Vd 1.46282 0.96961
B 0.99806 0.99538 Tdy 0.80217 0.40932
Oy 0.00579 0.00567 Oq 0.00032 0.03518
fhy 0.00158 0.00159 Pa 0.99672 0.98999

(a) Parameter estimates. Current specificatibr: 1.89; Revised specification/ = 3.23.

Moment Data Current Revised Moment Data Current Revised
E[A(] 1.89 1.89 1.91 SDI]Ad) 11.09 3.32 2.05
E[Ad] 1.47 1.84 2.77 SDIrq] 19.15 18.70 13.75
E[r4] 6.51 5.47 5.93 SDlry] 2.72 3.18 3.66
Elrs] 0.25 0.24 0.23 SD[z4] 0.45 0.45 0.25
E[z4] 3.42 3.44 3.47 Corr[Ac, Ad] 0.54 0.48 0.39
Elep] 6.26 5.23 5.70 ACry] 0.68 0.94 0.89
SDI[A¢] 1.99 2.00 1.96 AC|z4] 0.89 0.91 0.85

(b) Unconditional short-sample moments given the paranestémates for each model.

Table 6: Baseline model estimates and moments without nmgtébng-run correlations and a longer data sample.

the Great Depression period to maintain a balanced sampleexample, since we include the
correlation between equity returns and consumption grawdr the lastl0 years, our effective
sample runs from 1940 to 2017, even though our raw data &al829 (i.e., the first growth rate
isin 1930). Therefore, the decision of whether to includssthlong-run correlations changes some
of the other moments we are trying to match. One major chanigethe standard deviation of div-
idend growth, which increases fromR5 to 11.09. The correlation between consumption and divi-
dend growth is also much stronger, rising fror2 to 0.54. This section tests the robustness of the
estimates from our baseline model by removing the long-ouretations and extending the sample.
Table 6shows the parameter estimates and moments for the basebidel mith the longer
sample. Our qualitative results are unchanged, despitditieeences in the data moments. The
current specification fits the data very well with small RA 388 values and the results are driven
by valuation risk. In contrast, the revised specificatios thite data worse (thé value rises from
1.89 to 3.23), the RA value is well outside the accepted range in thedlitee, and the preference
shock standard deviation is two orders of magnitude lafugan it is with the current specification.
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