
 

School of Economics and Finance
Online Discussion Paper Series
issn 2055-303X
http://ideas.repec.org/s/san/wpecon.html
info: econ@st-andrews.ac.uk

Higher Tax for Top Earners

Jim Jin and Felix FitzRoy

School of Economics and Finance Discussion Paper No. 1702
16 Feb 2017 (revised 17 Feb 2017)
JEL Classification: D30, D60, H20
Keywords: flat tax, increasing marginal taxes, income redistribution

                             1 / 26



 

 

HIGHER TAX FOR TOP EARNERS 

 

Felix FitzRoy* 

Jim Jin** 

 

School of Economics and Finance 

University of St Andrews 

 

 

     JEL Classification Number: D30, D60, H20,  

 

Key Words: flat tax, increasing marginal taxes, income redistribution, 

 

February 2017 

      

Abstract: The literature can justify increasing and decreasing marginal taxes (IMT & 

DMT) on top income under different social objectives and income distributions. Even if 

DMT are optimal, they are often politically infeasible. Then a flat tax seems to be a 

constrained optimal solution. We show however that, if we want to maximize the utility of 

a poor majority any flat tax can be inferior to some IMT. We provide a sufficient condition 

for (two-band) IMT to dominate any flat tax and further generalize this result to allow 

different welfare weights, declining elasticity of labor supply and more tax bands. 

 

 

* School of Economics and Finance, University of St Andrews, St Andrews KY16 9AL, Scotland, UK, 

Tel. (01334)-462437, e-mail: frf@st-andrews.ac.uk. 

** Corresponding author: School of Economics and Finance, University of St Andrews, St Andrews KY16 

9AL, Scotland, UK, Tel. (01334)-462447, e-mail: jyj@st-andrews.ac.uk 

  

                             2 / 26



 

1 

 

1. Introduction 

 Throughout most developed as well as developing economies, income 

distributions have become increasingly skewed in recent decades (Stiglitz, 2012; Piketty, 

2014). One reason has been declining marginal tax rates for top incomes. Another is the 

effective high marginal tax faced by low income earners due to withdrawal of benefits as 

earnings rise, leading to the poverty trap. The existing tax structures in most developed 

countries are U-shaped, with increasing marginal tax (IMT) on high earnings (but not on 

capital gains). The justification of IMT is to raise revenue from those most able to pay, 

and provide a social safety net for the poor. This view is theoretically justified by 

Diamond (1998) and Saez (2001) based on their assumption that top income follows 

Pareto distributions (see also Salanie (2003)).  

 However, the shape of the optimal tax curve seems to be sensitive to income 

distributions. With a bounded distribution, Sadka (1976) and Seade (1977) find zero 

optimal marginal tax rate for the top earner. Following this line, the tax curve should be 

inversely U-shaped or even declining (see Tuomala (1984), Kanbur and Tuomala (1994), 

Boadway et al (2000), Tarkiainen and Tuomala (2007), Hashimzade and Myles (2007), 

Boadway and Jacquet (2008), Kaplow (2008)). Then decreasing marginal taxes (DMT) 

on top income seem justifiable. But as Warren Buffet famously complained, the lower 

effective average tax rates paid by the rich, due to low capital gain taxes and various 

loopholes, are widely perceived to be unfair. This political problem often imposes a 

binding constraint on DMT and seems to imply a constrained optimal solution to be a flat 

tax, which by continuity should be closer to the optimal DMT and dominate IMT. 

Moreover, a flat tax will reduce administrative costs and avoid incentive distortions of 
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IMT (see Atkinson (1995) for a good overview). Thus Mankiw et al (2009) argue that 

“A flat tax, with a universal lump-sum transfer, could be close to optimal”. 

 On the other hand, Diamond and Saez (2011), Piketty and Saez (2012, 2013) 

(DSPS) argue that if the policy maker ignores the welfare of richest group (due to their 

low marginal utility of income) and focuses on the wellbeing of the poor majority, the 

marginal tax rate for top income should be 70-80%, substantially higher than its current 

level and the tax rates paid by the rest of the population. This policy has been successfully 

applied in the Scandinavian countries where high top tax rates co-exist with high labour 

force participation and the highest level of life satisfaction (Kleven 2014). The validity 

of different policy recommendations, IMT or flat tax, seems crucially dependent on social 

objectives as well as income distribution.  

 This paper shows that even when the optimal DMT are not feasible, a flat tax may 

not be the next best alternative. If we want to maximize the utility of the poor, IMT on 

top income earners are superior to any flat tax under a simple condition, which means 

the optimal tax on top income derived by Saez (2001) is higher than the optimal flat tax. 

This condition generally holds if we want to maximize the utility of a large poor majority. 

It also depends on income distribution, but not necessarily on boundedness. 

 Following DSPS (though they consider more general cases), we ignore the 

interests of the rich group and only maximize the utility of the poor. Later we allow 

different weights given to different poor households, leading to a similar effect as 

decreasing marginal utility of income assumed by DSPS. Surprisingly, when we put more 

weight on the very poor households, IMT are less likely to dominate a flat tax.  
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 We first assume a constant elasticity of labour supply for the whole population. 

Later we make a more realistic assumption of declining elasticity with income and show 

that IMT are more likely to dominate any flat tax. This is consistent with the optimal IMT 

obtained by Aaberge and Colombino (2013) and Andrienko et al (2014), using data from 

Norway, US, UK and Australia, with declining elasticity of labour supply.  

 Instead of a continuous tax structure, we first use a two-band tax model. The 

continuous tax curve has been criticized as “too far removed from the tax–benefit systems 

observed in practice to be a useful guide for policy” (Choné and Laroque 2005, p.396). 

Apps et al (2009) remark that “Given its significance in practice, the piecewise linear tax 

system seems to have received disproportionately little attention in the literature on 

optimal income taxation.” Diamond and Saez (2011) argue for practical and useful 

research on tax policy. The two-band tax model is the first step from a flat tax and can 

model IMT and DMT as well as a flat tax. Furthermore the two-band tax literature in 

particular supports DMT. Sheshinski (1989) first argued for rising two-band taxes under 

utilitarian and maximin objectives. However, Slemrod et al (1994) find errors in his proof 

and use numerical simulations to show that DMT are in fact optimal. Similarly Salanie 

(2003), Hindricks and Myles (2006) obtain optimal decreasing two-band taxes in a two-

class economy. Hence it is interesting to see if two-band IMT can dominate any flat tax. 

We later allow more tax bands and generalize our result accordingly.  

 We introduce our basic two-band tax model in the next section. Section 3 shows 

that any flat tax is Pareto dominated by some DMT. Section 4 gives a sufficient condition 

for IMT to dominate any flat tax and shows it is valid if we want to maximize the total 

utility of a large poor majority. Section 5 extends our model and generalizes the results 
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allowing different welfare weights for the poor, declining elasticity of labor supply and 

multi-tax bands. Section 6 concludes the paper. 

2. Basic Model 

 We assume that a population, normalized to unity, consists of a continuum of 

households, whose wage is denoted by w, and is distributed on [a, b], where a > 0, b is 

bounded, but can be very large and approximately treated as infinite. The density and 

cumulative functions of w are denoted by f(w) and F(w). We define the poor population 

as those with wages below a fixed level w , and those with higher wages are the rich. The 

government’s objective is to maximize the total utility of the poor. This is similar to 

Diamond and Saez (2011) who give virtually zero weight to the rich in the social welfare 

function due to decreasing marginal utility of income. Our objective can be justified by 

the political goal of income redistributions. We first treat the poor equally and will allow 

different weights given to them in section 5(i).  

Every household has a quasi-linear utility, m – x/(1 + 1/), where m is net 

income, x is labour supply and is its elasticity. This simple utility function has been 

widely used in the literature (e.g. Atkinson 1995). We first assume an identical for the 

whole population and later allow declining elasticity in section 5(ii).  

Given wage w, a household’s pre-tax earnings y = wx. The government imposes 

two tax rates, 1t  and 2t , for earnings below and above a threshold Y. The tax revenue, 

after a fixed expenditure is paid, is distributed to all households equally as a basic income, 

denoted by B. Given our unit population B is also equal to the total transfer received by 

the whole population. The two-band taxes reduce to a flat tax when 1t  = 2t . We will allow 

more tax bands in section 5(iii). 

                             6 / 26



 

5 

 

Given 1t , 2t , Y and B, households’ utility functions can be written as: 

  1u  = wx(1 1t ) – 
1 1/ ε

1 1/

x






 + B    for wx  Y (1) 

  2u  = wx(1  2t ) + ( 2t   1t )Y – 
1 1/ ε

1 1/

x






 + B  for wx > Y (2)  

 Every household chooses labour supply x to maximize utility. We first consider 

IMT, i.e. 1t  < 2t  and assume Y ≥ w (1  1t ). Thus every poor household faces the 

lower rate t1, and chooses optimal labour supply x = w(1  1t ). This can be justified by 

the political agenda to help the poor by charging them a low tax rate 1t . Substituting it 

into (1), we obtain the maximized utility w(1 – 1t )/(1 + ) + B. Integrating it over 

[a, w ], we get the total utility of the poor as our objective function: 

  W = 






w

a
dwwfw

t
)(

1

)1( 1
1

1 



 + BF( w )    (3) 

 Given Y ≥ w (1  1t ) and 1t  < 2t , the population is divided into three groups. 

All poor households and some rich ones with w < ŵ   [Y/(1 – 1t )] choose labor 

supply x = w(1  1t ) and pay tax of 1t (1  1t )w. Very rich households with w > 1w   

[Y/(1 – 2t )] choose x = w(1  2t ) and pay tax  2t (1  2t )w  ( 1t   2t )Y. The 

remaining rich households with ŵ  < w  1w  choose x = Y/w, earning Y, i.e. bunching, and 

pay 1t Y. As 1t [F( 1w ) – F( ŵ )]  ( 1t  2t )[1 – F( 1w )] = 1t [1 – F( ŵ )] – 2t [1 – F( 1w )], the 

total tax revenue from these three groups is: 

  R = 


w

a
dwwfwtt

ˆ
1

11 )()1( 
 + 


b

w
dwwfwtt

1

)()1( 1

22
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  + { 1t [1 – F( ŵ )] – 2t [1 – F( 1w )]}Y     (4) 

We assume the fixed expenditure is less than R, so B is positive and maximized 

whenever R is. So we can replace R by B. Under a flat tax, 1t  = 2t = t, we have ŵ  = 1w , 

and (4) reduces to 


b

a
dwwfwtt )()1( 1 

. Then  our objective function (3) reduces to: 

  W =  

 
w

a
dwwf

wt
)(

1

])1[( 1





 + F( w ) 


b

a
dwwfwtt )()1( 1 

  (3’) 

3. DMT vs. flat tax  

 The literature (e.g. Slemrod et al (1994)) has shown that DMT are generally 

optimal for two-band taxes under maximin or utilitarian objectives. In this section we 

further show that a flat tax is always Pareto dominated by some DMT.  

 We start with a flat tax t > 0, and consider to lower tax rate t2 for earnings beyond 

Y = (1 t)[1 – t/(1 – t)]b. As (1 t)b is the highest earnings, there is a positive 

mass earning more than Y, and we can show that each of them will pay more tax with a 

lower tax rate t2. The tax payment from a household within this group is 2t (1  2t )w 

 (t  2t )Y. According to Saez (2001) the impact of tax change can be decomposed into 

two effects, mechanical and behavioral. The former assumes a constant labor supply and 

can be expressed as [(1  2t )w  Y] 2t , and the latter reflects the response of labor 

supply and is indicated by  2t (1  2t )w 2t . Adding them together the derivative 

of the tax payment respect to 2t  is negative at 2t  t if (1 t)[1 – t/(1 – t)]w  Y, 

which is guaranteed for any w < b given our definition of Y. Thus each household earning 

more than Y pays more tax when 2t  falls. These households must be better off due to a 
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lower marginal tax rate and higher B. Moreover the poorer households are better off too 

due to higher basic income B. Therefore a lower 2t  benefits everyone, including the poor. 

 Proposition 1: Every flat tax is Pareto dominated by some DMT. 

 The intuition follows from Saez’ (2001) concept of behavioural and mechanical 

responses. A lower 2t  will motivate rich households to increase their labor supply. If the 

tax threshold Y is set sufficiently high, the tax revenue loss will be limited, and the extra 

labor supply from each household can generate significant tax revenue due to its high 

productivity. So the behavioural effect dominates the mechanical effect, leading to a 

higher revenue. This lower tax applies to a positive mass, not just the highest earner, 

different from the zero top marginal tax obtained by Sadka (1976) and Seade (1977). 

 When DMT are optimal but politically infeasible, a flat tax seems to be the 

constrained optimal solution if it is closer to the optimum than and thus dominates IMT 

by continuity. However, this monotonicity of tax policy may not be valid. Assuming the 

government is politically constrained to implement two-band IMT and maximize the total 

utility of the poor, we will show that under a simple condition the optimal flat tax is 

dominated by some IMT. Before proving this result, we first obtain the optimal flat tax 

t*, which maximizes our objective function (3’).  

To simplify the notation, we denote the total earnings of the poor households 

under a flat tax by 1E  ≡ 


w

a
dwwfwt )()1( 1 

 and denote the earnings of the rich by 2E  

≡ 


b

w
dwwfwt )()1( 1 

. The total earnings of the whole population is E = 1E  + 2E . Since 

the population is normalized to 1, E is also the average earnings of the whole population. 
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The average earnings of the poor and rich are 1e ≡ 1E /F( w ) and 2e ≡ 2E /[1 – F( w )] 

respectively. By the definition we always have 1e   E   2e .  

 We differentiate (3’) and find dW/dt = [1 – t(1 + )]F( w )E/(1 – t) – 1E . It is 

positive if and only if t < (1 – 1e /E)/(1 +  – 1e /E]. So we obtain the optimal flat tax t*. 

 Proposition 2: The optimal flat tax to maximize (3’) is t* =
Ee

Ee

/1

/1

1

1






. 

 This result is a special case of Piketty and Saez (2013), who derive an optimal 

linear tax of (1 – g )/(1 +  – g ), where g  is the average social welfare weight weighted 

by pre-tax incomes, which “is also the ratio of the average income weighted by individual 

social welfare weights ig  to the actual average income” (p. 21). Given our welfare 

function, which only values the utility of the poor, g = 1e /E and their formula reduces 

to our t*. Piketty and Saez (2013) further discuss the median voter tax rate, which 

maximizes the utility of the median earner, and point out “a tight connection between 

optimal tax theory and political economy”. If 1e  is equal to the median income, our t* 

becomes the median voter tax. Interestingly, the median income in the U.S. is roughly 

$26,000. Piketty and Saez estimate the average top 1% income as $1.2 million. Given 

the average earnings of $38,000, the average of the bottom 99%, 1e  is also about $26,000. 

Thus our flat tax for the 99% majority is equal to the median voter tax rate.  

4. IMT vs. flat tax  

Given the optimal flat tax t*, the question now is whether some IMT ( 1t < 2t ) can 

generate a higher value of (3) than t* does. This must be true if we find W/ 1t  < 0 and 
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W/ 2t  > 0 when 1t  = 2t  = t*. In fact these two conditions are identical and we can focus 

on W/ 2t  > 0. Notice that the first term in (3) does not depend on 2t . If 2t  maximizes 

(3), it must maximize B (i.e. R). This is essentially the approach taken by Saez (2001). 

To prove that IMT can dominate the optimal flat tax, we just need to show B/ 2t  > 0 

when 1t  = 2t  = t*, instead of finding the optimal 2t .  

For simple presentation we let Y = w (1  1t ). This is not the only choice to 

obtain our results. For example, if we let Y = w (1  t*), the marginal poor (w = w ) 

will bunch when we lower 1t  and raise 2t , but this does not change the condition for 

W/ 1t  > 0 and W/ 2t  < 0 at 1t  = 2t  = t*, and has no effect on our result. Since our goal 

is to find a sufficient condition for IMT to dominate t*, this particular Y serves the 

purpose. Y = w (1  1t ) implies ŵ  = w . The tax revenue (4) (hence B) simplifies to:  

  B = 


w

a
dwwfwtt )()1( 1

11


 + 


b

w
dwwfwtt

1

)()1( 1

22

   

  + { 1t [1 – F( w )] – 2t [1 – F(w1)]}Y     (4’) 

 Then we investigate whether two-band taxes with 1t  < 2t  can lead to a higher 

value of (3) than the optimal flat tax t*, with B in (3) replaced by (4’). 

Proposition 3: There exists a two-bracket tax schedule with 1t < t* < 2t  that 

dominates the optimal linear tax rate t*, if at 1t  = 2t = t*, we have 

 
E

e1  >
2e

Y
             (5) 

Proof: see Appendix A. 
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 As we mentioned earlier, W/ 1t  < 0 and W/ 2t  > 0 depend on the same 

condition. This is not coincidental. If both W/ 1t  > 0 and W/ 2t  > 0, it would be 

feasible to increase (3) by raising 1t  and 2t  together. But this is impossible since t* is the 

optimal flat tax to maximize (3’).  

 Intuitively (5) can again be explained by Saez’ (2001) concept of behavioural and 

mechanical responses as in Proposition 1. The difference is that here some households’ 

tax payment increases with 2t , while others’ may fall with 2t . Given  2t > 0 at 1t  = 2t  = 

t*, the mechanical effect on (4’) is { 


b

w

dwwfwt )(*)1( 1   – [1 – F( w )]Y} 2t , and the 

behavioral effect is –[ 


b

w
dwwfwtt )(*)1(* 11 

] 2t . If their net effect is positive, i.e. 

[1 – t*/(1 – t*)] 2e > Y, as shown by (A2) in Appendix A, the overall mechanical effect 

dominates the behavioral effect, and the total tax payment rises with 2t , i.e., B/ 2t  > 0.  

Here the tax revenue rises, similar to the case of Proposition 1, due to a rise in 2t  instead 

of its fall. Since 1 – t*/(1 – t*) is equal to 1e /E, the condition reduces to (5), which 

guarantees the optimal flat tax t* to be dominated by some IMT1. 

Moreover, our result can be obtained by directly comparing the optimal flat tax 

t* with the optimal top income tax rate obtained in Saez (2001). Without an income effect 

as assumed here, his tax rate becomes (1 – g)/[1 – g +  2e /( 2e  – Y)], where g is the social 

welfare weight given to the rich (also see Piketty and Saez (2013)). In our model g = 0 

since no welfare weight is given to the rich. Thus Saez’ optimal top income tax rate 

                                                 
1 We are very grateful to an anonymous referee for his suggestion on this interpretation. 
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becomes ( 2e  – Y)/[(1 + ) 2e  – Y]. If it is higher than t*, IMT must dominate t*. However 

no one has explicitly compared these two tax rates. In fact Saez’ asymptotic marginal tax 

rate ta can be obtained from [1 – ta/(1 – ta)] 2e  = Y. Hence ta > t* if and only if (5) holds2. 

Otherwise Saez’ marginal tax for top income will not be consistent with IMT.   

 Since (5) is evaluated under a flat tax, term (1  t*) drops out and the inequality 

only depends on the wage distribution, not on taxes. To evaluate (5), it is often convenient 

to consider the income distribution function G(y), with y = w, instead of wage 

distribution F(w). We can calculate 1e , 2e  and E with zero taxes, and let Y be y  ≡ w . 

For some distributions the validity of (5) does not depends on y . For instance, when the 

income distribution is nearly unbounded, we may approximate it by a Pareto distribution, 

G(y) = 1 – y for y  1,  > 1. Then condition (5) holds for any y 3. This result is 

consistent with Diamond (1998). The reason may appear to be the Pareto distribution’s 

thick-tail of top earnings. However, when  is large, the tail becomes very thin while (5) 

still holds. To illustrate this point further, we consider a thick-tailed distribution G(y) = 

(y/h), with 0 ≤ y ≤ h and  > 0. The number of rich households may not fall but even rise 

with income (if  > 1). But (5) never holds4. The validity of (5) may appear to require an 

unbounded income, but this is not necessarily true either. Let us consider a bounded 

Pareto distribution with G(y) = (1 – y)/(1 – h), with 1 ≤ y ≤ h and  > 1. It can be 

shown that (5) holds for any h and y , even when the maximum income h is very low and 

close to 1. These examples demonstrate (5) is very sensitive to distributions. 

                                                 
2 We thank an anonymous referee for pointing to this connection and implication. 
3 As 

2E  =  y /( – 1), 1 – G( y ) = y , E = /( – 1), 2e  = y E, so (5) becomes 1e  > 1.  

4 As 
1E  =  y /h( + 1), E = h/( + 1), and 1e  =  y /( + 1), (5) requires 2e  > h.  
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 In spite of such complexity, the validity of (5) may be determined by simple data 

without knowing income distributions precisely. For instance, Diamond and Saez (2011) 

estimate the threshold earnings of the top 1% U.S. earners as $0.4 million and their 

average earnings as $1.2 million. This implies Y/ 2e  = 1/3, which is lower than 1e /E, 

given 1e  = $26,000 and E = $38,000 as we mentioned earlier. So condition (5) holds.  

 Moreover, if we know the income distribution above the threshold y , (5) can be 

simplified. According to extreme value theory (Gnedenko (1943)), for a wide range of 

random variables, the conditional probability approximately follows a Pareto distribution 

when they are sufficiently large. This theory and empirical evidence suggest a Pareto 

distribution as a good approximation for top earners. Let G(y) = 1 – Ky for y ≥ y ,  > 

1, we obtain 2e / y  = /( – 1) and can simplify (5) to:  

 1 – 
E

e1  < 


1
        (6) 

In this case a thick tail does have a crucial impact. Given 1e /E, a very thick tail 

( close to 1) guarantees (6); while a thin tail (a large ) ensures its violation. For the top 

1% earners in the US, Diamond and Saez (2011) estimate  = 1.5, so (6) becomes 1e /E 

> 1/3. It holds as 1e /E = 26/38. For U.S. 1992 earnings above $150,000, Saez (2001) 

shows  = 2 (i.e. Y/ 2e  = 0.5). Similarly Bach et al (2012) find  = 2 for German top 

earnings. Then (6) becomes 1e  > 0.5E. For any Pareto distribution with a finite , when 

Y is sufficiently large, 1e must be close to E and (6) will certainly hold. 

Corollary: If high earnings follow a Pareto distribution, a higher tax on a small 

group of top earners always benefits the remaining population. 
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This result supports DSPS’s view about a higher tax on top earners. But this may 

only apply to a small rich group, e.g. 1%. The current top tax rate, however, usually 

applies to a much larger group. Bach et al (2012) argue that their top tax rate of 2/3 in 

Germany should only apply to an income level much higher than the current threshold. 

Indeed when we consider a higher tax on a large group, (5) may not hold. For instance, 

if we consider a higher tax on the top 50%, i.e. Y = the median earnings, (5) does not hold 

for any lognormal distribution. Therefore it seems undesirable to impose a higher tax rate 

on the rich half of the population on behalf of the poor half.  

The question is to find a reasonable size of the rich group for justifiable IMT. It 

is difficult to answer this question by (5) directly since it is very sensitive to income 

distributions which can hardly be identified precisely. It would be desirable to check its 

validity without assuming specific distributions. This is easier to do using another 

condition equivalent to (5). It depends on whether we have a decreasing 1e / 2e , the ratio 

of the average earnings of the poor and the rich (Proof: see Appendix B).  

Proposition 4: (5) holds if and only if e1/e2 falls around Y.  

If the curve of 1e / 2e  is single peaked, after its maximum, the ratio will fall and 

IMT will dominate any flat tax. When earnings are unbounded and Y is sufficiently large, 

1e  will approach to E but 2e will go to infinity. So 1e / 2e must fall and (5) holds 

eventually. In this case unbounded earnings are likely to justify IMT. The question is: 

how large Y is “sufficient”. The answer may be difficult to obtain by theory alone and 

empirical data may reveal how large a rich group should be subject to a higher tax.  

 Our data are obtained from the United Nation’s “World Income Inequality 

Database” (May 2008), and provide each decile’s earnings as percentages of aggregate 

                            15 / 26



 

14 

 

earnings. The data set does not contain the relevant information for all years. To avoid 

subjective bias we use the most recent data for each country. Unfortunately, our ratio of 

1e / 2e does not take into account complex tax systems which generate real data. So when 

we use the actual earnings ratios to justify IMT, it is an approximation, not accurate 

prediction. On the other hand, despite complex tax systems in G8 countries, we find their 

1e / 2e  curves are all single peaked and fall from similar thresholds of income deciles.  

 We use a decile’s earnings as a percentage of the aggregate earnings to calculate 

1e / 2e . The ratio of this group’s earnings to that of the whole population is given as r ≡ 

1E /E. So 1e  = 1E /G(y) = rE/G(y). 2e  = (E – 1E )/[1 – G(y)], i.e. (1 – r)E/[1 – G(y)]. Hence 

1e / 2e  = r[1 – G(y)]/(1 – r)G(y). The data provide us the values of r for G(y) = 10% to 

90%, giving us 9 values of 1e / 2e . The results for G8 countries are given below.    

Table 1: Ratio of 1e / 2e  for G8 Countries 

Country Year 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Canada 2000 0.25 0.32 0.35 0.38 0.39 0.39 0.39 0.38 0.34 

France 2000 0.38 0.40 0.44 0.45 0.45 0.46 0.46 0.44 0.42 

Germany 2000 0.31 0.37 0.40 0.42 0.43 0.43 0.43 0.41 0.38 

Italy 2002 0.21 0.27 0.31 0.32 0.34 0.35 0.35 0.34 0.31 

Russia 2000 0.13 0.20 0.24 0.27 0.29 0.29 0.29 0.27 0.23 

UK 1999 0.23 0.28 0.31 0.32 0.34 0.34 0.34 0.32 0.28 

USA 2000 0.17 0.23 0.26 0.29 0.31 0.32 0.32 0.31 0.27 

Japan 1971 0.05 0.16 0.22 0.26 0.29 0.30 0.30 0.29 0.25 

 

  Apparently, the ratio differs significantly between eight nations. However, 1e / 2e

exhibits a single peak in all G8 countries and surprisingly, it starts to decline around 80% 

of income levels. Hence a higher tax can be justified when it is imposed on less than 20% 

of top earners on the behalf of more than 80% poor majority.  

5. Extensions 
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(i) Welfare weight: So far we have treated all the poor equally. Ideally we may give them 

different welfare weights, and allow a continuous treatment across the rich and the poor. 

This is similar to the approach taken by DSPS based on decreasing marginal utility of 

income. Assigning decreasing weight to income has a similar effect as assuming 

decreasing marginal utility of income. Intuitively, one may expect that this should 

increase the chance of justifying IMT. This expectation is similar to the conventional 

belief that IMT are mostly justifiable under maximin, and is not correct.  

 Given w  we assign welfare weight s(w) to every poor household w (≤ w ) such 

that 
w

a
dwwfws )()(  = F( w ). We then multiply s(w) with each poor household’s net 

utility [(1  1t )w]/(1 + ) + B, and integrate the product over [a, w ], to get a weighted 

utility of the poor as our new objective function: 

   W = 
1 ε

1(1 )

1

t





 


w

a
dwwfwws )()( 1 

+ BF( w )      (7) 

 (7) reduces to (3) when s(w) = 1. Since s(w) generally falls with w, we have 




w

a
dwwfwws )()( 1 

 < 


w

a
dwwfw )(1 

. We use 1
~e  to denote the weighted average 

earnings of the poor, (1 t) 


w

a
dwwfwws )()( 1 

/F( z ). The more weight is given to the 

poorer households the lower 1
~e  is. Similar to the previous case, we first obtain the 

optimal flat tax t
~

* which maximizes (7). It is similar to t*, except for 1e  being replaced 

by 1
~e , i.e. t

~
* = (1 – 1

~e /E)/(1 +   – 1
~e /E]. Then IMT dominate any flat tax if W/ 1t  < 

0 and W/ 2t  > 0 when 1t  = 2t = t
~

*. Obtaining such a condition we can generalize the 

previous condition (5) for IMT to dominate any flat tax (see Appendix C). 
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Proposition 5: IMT give a higher value of (7) than any flat tax if at 1t  = 2t = t
~

* 

 
E

e1
~

 >
2e

Y
        (8) 

When s(w) = 1, 1
~e  = 1e  and (8) reduces to (5). So condition (8) is a generalization 

of (5), and can also be linked to Saez’ asymptotic marginal tax rate. Given any 1
~e  < 1e , 

the optimal tax rate for top income remains the same as before since it must maximize 

the tax revenue, but the optimal flat tax is higher given higher welfare weights on the 

very poor. So the former is less likely to be higher than the latter, and (8) is less likely to 

hold than (5) is, thus IMT are less likely to be justifiable, unexpectedly. The intuition is 

that the poorer households are less productive, and rely more on income transfer. A 

higher tax on low earnings is less damaging to low income earners and more beneficial 

to them due to more tax revenue and money transfer from the rich. So a flat tax is more 

likely to dominate IMT if we give most weight to the poorest.  

The validity of (5) only implies IMT can benefit the poor as a whole, not 

necessarily each of them. (8) can tell us if IMT benefit a particular household. Our 

objective to maximize (7) is identical to maximizing the utility of a household with 

earnings of 1
~e . This is consistent with the political agenda to help a representative family 

in the society. When (8) holds, IMT can benefit those with earnings higher than 1
~e . If it 

holds when 1
~e  is equal to the lowest earnings, IMT can benefit all poor. For instance, 

given a Pareto distribution with  = 1.5 for the top 1% earners, Y/ 2e  = 1/3, and (8) 

becomes 1
~e /E > 1/3. In most OECD countries (except for US), the ratio of the minimum 
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wage to average wage is more than 1/35. So a higher tax on top 1% can benefit all 99%. 

Similarly, with  = 2 for the top German earnings, (8) becomes 1
~e /E > 0.5. The lowest 

and average monthly German salaries are €1,832 and €34496. Thus virtually all poor can 

benefit from a higher tax on the rich. 

(ii) Declining elasticity: Empirical data show that full-time and high income earners are 

less responsive to tax changes than part-time and low income earners (see Aaberge and 

Colombino (2013) and Andrienko et al (2014)). So our constant elasticity of labor supply 

is unrealistic. In fact this assumption is unfavorable for justifying IMT. Now we allow 

the elasticity to be declining with income. Our objectives (3) and (3’), and the tax revenue 

(4’) remain valid, except that  cannot be taken out of the integrals. We follow the same 

approach as before, i.e. first to obtain the optimal flat tax *t̂ , which maximizes (3’), then 

evaluate W/ 1t  and W/ 2t  when 1t  = 2t = *t̂ .  

 Following DSPS we define the average elasticity of labor supply, weighted by 

earnings, as ̂  ≡ 


b

a
dwwfw )(1  / 


b

a
dwwfw )(1 

, and define the average elasticity of the 

rich as 2̂  ≡ 


b

w
dwwfw )(1  / 


b

w
dwwfw )(1 

. Declining elasticity implies 2̂ < ̂ . Then 

we differentiate (3’) to get the optimal flat tax *t̂  = (1 – 1e /E)/(1 + ̂ – 1e /E). If W/ 1t  

< 0 and W/ 2t  > 0 when 1t  = 2t  = *t̂ , we know IMT dominate any flat tax. 

Proposition 6: With declining elasticity of labor supply, some IMT dominate any 

flat tax if at 1t  = 2t = *t̂ , we have 

                                                 
5 See https://stats.oecd.org/Index.aspx?DataSetCode=MIN2AVE. 
6 See http://www.tradingeconomics.com/germany/wage. 
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1 –
E

e1  < (1 –
2e

Y
)

2
ˆ

ˆ




             (9) 

 Proof: see Appendix D. 

Inequality (9) reduces to (5) if 2̂ = ̂ . Given 2̂ < ̂ , (9) is more likely to hold than 

(5) is, and IMT are more likely to dominate any flat tax, as expected. Given a Pareto 

distribution with  = 2 for top income, Y/ 2e  = 0.5, and (9) becomes 1 – 1e /E < 0.5 ̂ / 2̂

. If ̂ / 2̂  = 2 (e.g. ̂  = 0.4, 2̂  = 0.2), (9) is guaranteed. Once again an intuitive 

explanation emerges from the comparison of the optimal flat tax and Saez’ asymptotic 

marginal tax rate. Given 2̂  we have Saez’ revenue maximizing top income tax rate. But 

if the average elasticity ̂  is higher, the flat tax *t̂ must be lower. Hence the former is 

more likely to be higher than the latter, and (9) is more likely to hold than (5). 

(iii) More tax bands: Finally, we consider the case of more than two tax bands. We 

assume 1t  only applies to incomes between Y and another threshold 0Y , below which 

different tax rates may apply. So 1t  is only imposed on households with w ≥ 0w , where 

0w (1 – 1t ) = 0Y . Let u(w) be the utility of those households with w ≤ 0w (< w ), not 

subject to either 1t  or 2t . Then the utility of the poor, (3) can be rewritten as:  

  W = 
0

)()(
w

a
dwwfwu  + 






w

w
dwwfw

t

0

)(
1

)1( 1
1

1 



 + BF( w )               (10) 

 Let 0B  be the basic income transferred from earnings below 0Y , and F( 0w ) be the 

households with w ≤ 0w . They are independent of 1t  and 2t . When 1t  = 2t = t, we have: 

 B = 0B  + t(1 – t) 


b

w
dwwfw

0

)(1   – t 0Y [1 – F( 0w )]               (11) 
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 The question is: whether a higher tax on income above Y ( 2t  > 1t ) can lead to a 

higher value of (10) than any partial flat tax t on income above 0Y , given other tax rates 

below 0Y  fixed. To answer this question, we follow the same approach again as before. 

We first obtain the optimal partial flat tax *t


 on income above 0Y . Then we find the 

condition for W/ 1t  < 0 and W/ 2t  > 0 when 1t  = 2t  = *t


.  

 We let 0E  denote the earnings of households with w ≥ 0w  under a flat tax t, i.e., 

0E  = (1 – t) 


b

w
dwwfw

0

)(1  . Their average earnings 0e  = 0E /[1 – F( 0w )]. The optimal 

tax *t


 can be written as (1 – d)/(1 +  – d), where d = 0Y / 0e  + ( 0E – 2E )/F( w ) 0E . Thus 

we can generalize (5) to the case with more than two tax bands (see Appendix E). 

Proposition 7: IMT can do better than any partial flat tax if at 1t  = 2t = *t


, 

  
0

0

e

Y
+ 

0

20

)( EwF

EE 
 > 

2e

Y
               (12) 

 In our previous two-band tax case, 0Y  = 0, 0w  = a, 0E  = E, (12) reduces to (5). 

Although (12) is more complex than (5), its validity may be determined with simple data. 

In particular (12) must hold when 0Y / 0e  ≥ Y/ 2e . For instance, if earnings above 0Y  follow 

a Pareto distribution with 0Y / 0e = Y/ 2e , (12) must hold and a higher tax rate above Y is 

desirable. Moreover, let 0Y  = $0.15 million and Y = $0.4 million, we have 0Y / 0e = 0.5 

according to Saez (2001), and Y/ 2e  = 1/3 according to Diamond and Saez (2011). Again 

(12) holds and the tax rate above $0.4 million should be higher. These results again 

support DSPS’ higher taxes for top earners.  
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6. Concluding Remarks 

In this paper we argue that IMT are often better than any flat tax if we want to 

maximize the total utility of a large poor majority. We obtain a sufficient condition for 

IMT to dominate any flat tax, which only depends on aggregate features of the income 

distribution and the tax threshold. Using empirical data from G8 countries we find 

supporting evidence that a higher tax rate is justifiable when imposed on a small group 

(less than 20%). However, IMT become less likely to dominate any flat tax if we give 

more welfare weights to the very poor households. Similar to our original condition (5), 

more general results are obtained with declining elasticity of labor supply and multi-band 

taxes. These findings support the argument of DSPS for higher taxes on top earners. It 

also has interesting political economy implications, and might perhaps be interpreted as 

an explanation for – or at least consistent with – IMT on high income earners in most 

democracies, in contrast to much optimal tax theory.  

 In this paper we do not consider categorical benefits associated with 

unemployment or low income. Those benefits create high marginal tax rates for 

participation in the labour market - the ‘poverty trap’. This phenomenon, however, does 

not affect the larger part of the working population. We focus on the tax rates relevant to 

the working population and do not consider more complex structures. We do not focus 

on the level of tax rates and the magnitude of social gains. Both tend to be small in our 

model, but would be more significant given low marginal utility of income and low 

elasticity of labour supply for the rich. Though highly stylized, we hope that this paper 

contributes to the debate on tax policies.  
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Appendix A, Proof of Proposition 3:  

We show that W/ 1t  < 0 and W/ 2t  > 0 when 1t  = 2t = t* if and only if (5) holds. From 

(4’) we see B/ 1w  = 2t f( 1w )Y – 2t (1 – 2t )f( 1w ) 1w  = 0 as (1 – 2t ) 1w   Y. So we 

can differentiate B given 1w  fixed. As 1t  = 2t , 1w  = w , 1t [1 – F( w )] – 2t [1 – F(w1)] = 0, 

so we can ignore the change of Y when we differentiate (4’) with respect to 1t  and 2t . 

 
1t

B




= (1 – 1t )[1 – (1+) 1t ] 


w

a
dwwfw )(1 

 + [1 – F( w )]Y 

 
2t

B




 = (1 – 2t )[1 – (1 + ) 2t ] 


b

w
dwwfw

1

)(1   – [1 – F( 1w )]Y 

Using 1E  and 2E , they reduce to [1 – t/(1 – t)] 1E  + [1 – F( w )]Y and [1 – t/(1 – t)] 2E  

– [1 – F( w )]Y. Substituting them into W/ 1t  and W/ 2t  given 1t  = 2t , we find  

 
1t

W




 = F( w ){[(1 –

t

t

1


) 1E  + [1 – F( w )]Y} –  1E      (A1)  

  
2t

W




 = F( w ){[(1 –

t

t

1


) 2E  – [1 – F( w )]Y}     (A2) 

As t* = (1 – 1e /E)/(1 +  – 1e /E) and 1E /F( w ) = 1e , (A1) < 0 and (A2) > 0 if and only if 

11Ee /E + [1 – F( w )]Y – 1e < 0, and 21Ee /E – [1 – F( w )]Y > 0. Moreover as 11Ee /E –

1e  = – 21Ee /E, and 2E /[1 – F( w )] = 2e , both inequalities become 21ee  > EY, i.e. (5).  

When (5) holds, there exist a two-bracket tax schedule with 1t  < t* < 2t , dominating t*. 

Since t* is the optimal linear tax rate, the two-bracket schedule dominates any flat tax. 

Appendix B, Proof of Proposition 4:  

The derivative of 1e / 2e  with respect to w  is negative if 2e
w

e



 1  < 1e
w

e



 2 .  

Note 1e  =
)(

1

wF

E
, 2e  =

)(1

2

wF

E


, 

w

E



 1  = Yf( w ) = 
w

E



 2 . So we obtain  

 
w

e



 1  = 
2)(

)(

wF

wf
[YF( w ) – 1E ] = 

)(

)(

wF

wf
(Y – 1e ).          (B1) 

 
w

e



 2  = 
2)](1[

)(

wF

wf


{ 2E  – Y[1 – F( w )]} = 

)(1

)(

wF

wf


( 2e  – Y)    (B2) 

Hence 1e / 2e  falls with w  if and only if 2e (Y – 1e )/F( w ) < 1e ( 2e  – Y)/[1 – F( w )], i.e. 

2E (Y – 1e ) < 1E ( 2e  – Y), or EY < 21eE  + 12eE  = 21ee , which is (5).   
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Appendix C, Proof of Proposition 5:  

Since (7) is similar to (3), W/ 1t  is similar to (A1) and < 0 if and only if 

 [(1 –
t

t

1


) 1E  + [1 – F( w )]Y – 1

~e  < 0     (C) 

Substituting *
~
t = (1 – 1

~e /E)/(1 +  – 1
~e /E) into (C), we get 11

~ Ee /E + [1 – F( w )]Y < 1
~e

, or [1 – F( w )]Y < 21
~ Ee /E, i.e. EY  < 21

~ ee . This also applies to W/ 2t > 0. 

Appendix D, Proof of Proposition 6:  

Similar to Appendix A, except for varying , we find when 1t  = 2t ,   

 
2t

B




 = (1 –

t

t

1

ˆ
2 ) 2E  – [1 – F( w )]Y      (D1) 

When 1t  = 2t = *t̂ , (D1) is positive if and only if  

 [1 – 




ˆ

ˆ
2 (1 –

E

e1 )] 2E  > [1 – F( w )]Y      (D2) 

Dividing (D2) by 2E , we get 1 – (1 – 1e /E) 2̂ / ̂  > Y/ 2e . One can check that the same 

condition holds for W/ 1t  < 0.  

Appendix E, Proof of Proposition 7:  

Given (11) and 1t  = 2t = t, we have B/ 0w  = 0 as 0w (1 – t) = 0Y . So we differentiate 

(11) given 0w  fixed, and find B/t = [1 – t/(1 – t)] 0E  – 0Y [1 – F( 0w )]. From (10) we 

see W/ 0w  = 0 since u( 0w ) must be equal to [ 0w (1 – t)]/(1 + ). So we differentiate 

(10) given 1t  = 2t and 0w fixed. Substitute B/t into W/t, we get 

 
t

W




= F( w ){(1 –

t

t

1


) 0E  – 0Y [1 – F( 0w )]} – 0E  + 2E     (E)  

The optimal partial flat tax can be solved from (E) = 0, as *t


 = (1 – d)/(1 +  – d), where 

d = { 0Y [1 – F( 0w )] + ( 0E  – 2E )/F( w )}/ 0E  = 0Y / 0e  + ( 0E  – 2E )/F( w ) 0E .  

Then we check if W/ 2t  > 0 by substituting *t


 into (A2). This is equivalent to check if 

*t


 < (1 – Y/ 2e )/(1 +  – Y/ 2e ), i.e., d > Y/ 2e , which holds if and only if 

 
0

0

e

Y
+ 

0

20

)( EwF

EE 
 > 

2e

Y
   

One can check that the same condition holds for W/ 1t  < 0.   

                            24 / 26



 

23 

 

References 

Aaberge, R. and U. Colombino, 2013, Using a Microeconometric Model of Household Labour Supply to 

Design Optimal Income Taxes, Scandinavian Journal of Economics, vol. 115, pp. 449-475  

Andrienko, Y., P. Apps and R. Rees, 2014, Optimal Taxation, Inequality and Top Incomes, IZA DP No. 

8275  

Apps, P., N. V. Long, and R. Rees, Optimal Piecewise Linear Taxation, CESifo Working Paper No. 2565, 

2009 

Atkinson, A. B., Public Economics in Action: The Basic Income/Flat Tax Proposal, Clarendon Press, 

Oxford, 1995  

Bach, S., G. Corneo and V. Steiner, 2012, Optimal Top Marginal Tax Rates under Income Splitting for 

Couples, European Economic Review 56, pp. 1055–1069 
Boadway, R, K. Cuff, and M. Marchand, 2000, Optimal Income Taxation with Quasi-Linear Preferences 

Revisited, Journal of Public Economic Theory, Vol. 2, pp. 43560 

Boadway, R, and L. Jacquet, 2008, Optimal Marginal and Average Income Taxation under Maximin, 

Journal of Economic Theory, vol. 143, pp. 425441 

Chone, P., and G. Laroque, 2005, Optimal Incentives for Labour Force Participation, Journal of Public 

Economics, vol. 89(2-3), pp. 395425 

Diamond, P. A., 1998, Optimal Income Taxation: An Example with a U – shaped Pattern of Optimal 

Marginal Rates, American Economic Review, vol. 88(1), pp. 83–95 

Diamond, P. A., and E. Saez, 2011, the Case for a Progressive Tax: From Basic Research to Policy 

Recommendations, The Journal of Economic Perspectives, Vol. 25, No. 4 (Fall 2011), pp. 165-190 

Gnedenko, D. V., 1943, Sur la distribution limite du terme maximum d'une serie aleatoire", Annals of 

Mathematics vol. 44: pp. 423-453 

Hashimzade, N. and G. Myles, 2007, Structure of the Optimal Income Taxation in the Quasi-Linear Model, 

International Journal of Economic Theory, vol. 3, pp. 533 

Hindricks, J. and G. Myles, 2006, Intermediate Public Economics, MIT Press, London,  

Kanbur, R. and M. Tuomala, 1994, Inherent Inequality and the Optimal Graduation of Marginal Tax Rates, 

Scandinavian Journal of Economics, vol. 96, pp. 27582 

Kaplow, L., The Theory of Taxation and Public Economics, Princeton University Press, 2008  

Kleven, H. L., 2014, “How can Scandinavians tax so much?”, Journal of Economic Perspectives, 28, 4, pp. 

77 - 98 

Mankiw, N. G., M. Weinzierl and D. Yergan, 2009, “Optimal Taxation in Theory and Practice”, NBER 

Working Paper 15071  

Piketty, T. and E. Saez, 2012, Optimal Labor Income Taxation, NBER working paper 18521. 

Piketty, T. and E. Saez, 2013, Optimal Labor Income Taxation, Handbook of Public Economics, Chapter 

7, vol. 5, pp. 391-474. 

Piketty, T., Capital in the Twenty-First Century, Harvard University Press 2014 

Sadka, E., 1976, On Income Distribution, Incentive Effects and Optimal Income Taxation, Review of 

Economic Studies, vol. 43, pp. 2618 

Saez, E., 2001, Using Elasticities to Derive Optimal Income Tax Rates, Review of Economic Studies, vol. 

68, pp.205–29 

Salanié, B., the Economics of Taxation, MIT Press, 2003 

Seade, J., 1977, On the Shape of Optimal Income Schedules, Journal of Public Economics, vol. 7, pp. 203–

36 

Sheshinski, E., 1989, Note on the Shape of the Optimum Income Tax Schedule, Journal of Public 

Economics, vol. 40, pp. 201–15 

Slemrod, J., S.Yitzhaki, J. Mayshar, and M. Lundholm, 1994, The Optimal Two–Bracket Linear Income 

Tax, Journal of Public Economics, vol. 53, pp. 269–90 

Stiglitz, J., The Price of Inequality, W. W. Norton & Company, 2012 

Tarkiainen, R. and M. Tuomala, 2007, On Optimal Income Taxation with Heterogeneous Work Preference, 

International Journal of Economic Theory, vol. 3, pp. 3546 

Tuomala, M., 1984, On the Optimal Income Taxation: Some Further Numerical Results, Journal of Public 

Economics, vol. 23, pp. 351–66 

World Income Inequality Database V2.0c May 2008, United Nations University, UNU-WIDER at: 

http://www.wider.unu.edu/research/Database/en_GB/database/ 

  

                            25 / 26



 

24 

 

Appendix F (not for publication), (5) holds for any bounded Pareto distribution:  

From G(y), we obtain 1 – G(y) = (y – h)/(1 – h), and g(y) = y/(1 – h). 

Then we have 1E  =
)1)(1(

)1( 1
















h

y
 , E =

)1)(1(

)1( 1
















h

h
, and 2E  =

)1)(1(

)( 11
















h

hy
 . 

So 1e  =
)1)(1(

)1( 1
















y

y
, 2e  =

))(1(

)( 11
















hy

hy
, and (5) becomes: 

 
)1(

)1( 1













y

y

)1(

)1(
1 











h

h
≥ 

)(

)()1(
11 














hy

hyy
     (F1) 

When h = its minimum y, the L'Hôpital's rule implies the equality of (F1). So (5) always 

holds if L = 
)1(

)1(
1 











h

h

)(

)( 11













hy

hy
rises with h, which must be true if:  

 

 
h

L



 )ln(
= 








 h

h

1

1

 










11

)1(

h

h
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11

)1(

hy

h
  








 hy

h 1

 ≥ 0  (F2) 

When y = its minimum 1, (F2) = 0 for any h. So we just need to show (F2) increasing 

with y. This is true if 










11

)1(

hy

h
  








 hy

h 1

increases with y. Let s ≡ h/y ≥ 1, this holds 

if 1L  ≡
1

1
1 






s
  

1



s
falls with s, i.e. 

s

L



 1  ≤ 0, or 
21

22

)1(

)1(












s

s
>

2

12

)1( 







s

s
, i.e.  

 2L  = ( – 1)(s – 1) – s(s – 1) ≥ 0     (F3)  

When s = 1, 2L  = 0. So it suffices to show 2L  increases with s, i.e.  

 
s

L



 2  = ( – 1)s – ( – 1)s – 0.5s(s – 1) ≥ 0  (F4) 

This is true if 3L  = ( – 1)(s – s) – 0.5(s – 1) = ( – 1)s – ( – 0.5)s + 0.5 

≥ 0. When s = 1, 3L  = 0. So 3L  ≥ 0 if  3L /s = ( – 1)( – 0.5)s( s  – 1) ≥ 0, which 

is guaranteed. Hence (5) must hold for any  > 1, h ≥ y ≥ 1. 
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